BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27997721)

  • 1. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.
    Mehlitz A; Eylert E; Huber C; Lindner B; Vollmuth N; Karunakaran K; Goebel W; Eisenreich W; Rudel T
    Mol Microbiol; 2017 Mar; 103(6):1004-1019. PubMed ID: 27997721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis.
    Rajeeve K; Vollmuth N; Janaki-Raman S; Wulff TF; Baluapuri A; Dejure FR; Huber C; Fink J; Schmalhofer M; Schmitz W; Sivadasan R; Eilers M; Wolf E; Eisenreich W; Schulze A; Seibel J; Rudel T
    Nat Microbiol; 2020 Nov; 5(11):1390-1402. PubMed ID: 32747796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling.
    Singh R; Liechti G; Slade JA; Maurelli AT
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32094256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Substrate Usage of
    Häuslein I; Cantet F; Reschke S; Chen F; Bonazzi M; Eisenreich W
    Front Cell Infect Microbiol; 2017; 7():285. PubMed ID: 28706879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism.
    Grubmüller S; Schauer K; Goebel W; Fuchs TM; Eisenreich W
    Front Cell Infect Microbiol; 2014; 4():156. PubMed ID: 25405102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells.
    Götz A; Eylert E; Eisenreich W; Goebel W
    PLoS One; 2010 May; 5(5):e10586. PubMed ID: 20485672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.
    Sixt BS; Siegl A; Müller C; Watzka M; Wultsch A; Tziotis D; Montanaro J; Richter A; Schmitt-Kopplin P; Horn M
    PLoS Pathog; 2013; 9(8):e1003553. PubMed ID: 23950718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.
    Yao J; Dodson VJ; Frank MW; Rock CO
    J Biol Chem; 2015 Sep; 290(36):22163-73. PubMed ID: 26195634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Substrate Usage and Metabolic Fluxes in
    Chen F; Rydzewski K; Kutzner E; Häuslein I; Schunder E; Wang X; Meighen-Berger K; Grunow R; Eisenreich W; Heuner K
    Front Cell Infect Microbiol; 2017; 7():275. PubMed ID: 28680859
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.
    Shima K; Kaufhold I; Eder T; Käding N; Schmidt N; Ogunsulire IM; Deenen R; Köhrer K; Friedrich D; Isay SE; Grebien F; Klinger M; Richer BC; Günther UL; Deepe GS; Rattei T; Rupp J
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis.
    Liechti GW; Kuru E; Hall E; Kalinda A; Brun YV; VanNieuwenhze M; Maurelli AT
    Nature; 2014 Feb; 506(7489):507-10. PubMed ID: 24336210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate usage determines carbon flux via the citrate cycle in Helicobacter pylori.
    Steiner TM; Lettl C; Schindele F; Goebel W; Haas R; Fischer W; Eisenreich W
    Mol Microbiol; 2021 Sep; 116(3):841-860. PubMed ID: 34164854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis.
    Engström P; Krishnan KS; Ngyuen BD; Chorell E; Normark J; Silver J; Bastidas RJ; Welch MD; Hultgren SJ; Wolf-Watz H; Valdivia RH; Almqvist F; Bergström S
    mBio; 2014 Dec; 6(1):e02304-14. PubMed ID: 25550323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis.
    Wylie JL; Hatch GM; McClarty G
    J Bacteriol; 1997 Dec; 179(23):7233-42. PubMed ID: 9393685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Human Genome-wide RNAi and Metabolite Analyses Identify IMPDH as a Host-Directed Target against Chlamydia Infection.
    Rother M; Gonzalez E; Teixeira da Costa AR; Wask L; Gravenstein I; Pardo M; Pietzke M; Gurumurthy RK; Angermann J; Laudeley R; Glage S; Meyer M; Chumduri C; Kempa S; Dinkel K; Unger A; Klebl B; Klos A; Meyer TF
    Cell Host Microbe; 2018 May; 23(5):661-671.e8. PubMed ID: 29706504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity.
    Wang X; Hybiske K; Stephens RS
    Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.
    Tan GM; Lim HJ; Yeow TC; Movahed E; Looi CY; Gupta R; Arulanandam BP; Abu Bakar S; Sabet NS; Chang LY; Wong WF
    Proteomics; 2016 May; 16(9):1347-60. PubMed ID: 27134121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis.
    Stephens RS; Kalman S; Lammel C; Fan J; Marathe R; Aravind L; Mitchell W; Olinger L; Tatusov RL; Zhao Q; Koonin EV; Davis RW
    Science; 1998 Oct; 282(5389):754-9. PubMed ID: 9784136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth characteristics of Chlamydia trachomatis in human intestinal epithelial Caco-2 cells.
    Lantos I; Virok DP; Mosolygó T; Rázga Z; Burián K; Endrész V
    Pathog Dis; 2018 Apr; 76(3):. PubMed ID: 29635314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic adaption of Legionella pneumophila during intracellular growth in Acanthamoeba castellanii.
    Kunze M; Steiner T; Chen F; Huber C; Rydzewski K; Stämmler M; Heuner K; Eisenreich W
    Int J Med Microbiol; 2021 May; 311(4):151504. PubMed ID: 33906075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.