BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27997721)

  • 21. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways.
    N'Gadjaga MD; Perrinet S; Connor MG; Bertolin G; Millot GA; Subtil A
    J Biol Chem; 2022 Sep; 298(9):102338. PubMed ID: 35931114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of carbon metabolism in Chlamydia trachomatis.
    Iliffe-Lee ER; McClarty G
    Mol Microbiol; 2000 Oct; 38(1):20-30. PubMed ID: 11029687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging.
    Romano JD; de Beaumont C; Carrasco JA; Ehrenman K; Bavoil PM; Coppens I
    Cell Microbiol; 2013 Apr; 15(4):619-46. PubMed ID: 23107293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An NlpC/P60 protein catalyzes a key step in peptidoglycan recycling at the intersection of energy recovery, cell division and immune evasion in the intracellular pathogen Chlamydia trachomatis.
    Reuter J; Otten C; Jacquier N; Lee J; Mengin-Lecreulx D; Löckener I; Kluj R; Mayer C; Corona F; Dannenberg J; Aeby S; Bühl H; Greub G; Vollmer W; Ouellette SP; Schneider T; Henrichfreise B
    PLoS Pathog; 2023 Feb; 19(2):e1011047. PubMed ID: 36730465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of host fatty acid-binding protein and fatty acid uptake on growth of Chlamydia trachomatis L2.
    Wang G; Burczynski F; Anderson J; Zhong G
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1935-1939. PubMed ID: 17526850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development.
    Patel AL; Chen X; Wood ST; Stuart ES; Arcaro KF; Molina DP; Petrovic S; Furdui CM; Tsang AW
    BMC Microbiol; 2014 Dec; 14():277. PubMed ID: 25471819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis.
    Yao J; Cherian PT; Frank MW; Rock CO
    J Biol Chem; 2015 Jul; 290(31):18874-88. PubMed ID: 25995447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism.
    Ahn WS; Antoniewicz MR
    Metab Eng; 2013 Jan; 15():34-47. PubMed ID: 23111062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Melanoma Cell Glutamine Metabolism by Stable Isotope Tracing and Gas Chromatography-Mass Spectrometry.
    Scott DA
    Methods Mol Biol; 2021; 2265():91-110. PubMed ID: 33704708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.
    Liechti G; Kuru E; Packiam M; Hsu YP; Tekkam S; Hall E; Rittichier JT; VanNieuwenhze M; Brun YV; Maurelli AT
    PLoS Pathog; 2016 May; 12(5):e1005590. PubMed ID: 27144308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae.
    Al-Younes HM; Gussmann J; Braun PR; Brinkmann V; Meyer TF
    J Med Microbiol; 2006 Jul; 55(Pt 7):879-886. PubMed ID: 16772415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro.
    Leonard CA; Schoborg RV; Borel N
    PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability.
    Nicholson TL; Chiu K; Stephens RS
    Infect Immun; 2004 Jul; 72(7):4286-9. PubMed ID: 15213176
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Häuslein I; Sahr T; Escoll P; Klausner N; Eisenreich W; Buchrieser C
    Open Biol; 2017 Nov; 7(11):. PubMed ID: 29093212
    [No Abstract]   [Full Text] [Related]  

  • 36. Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves "chlamydial anomaly".
    Packiam M; Weinrick B; Jacobs WR; Maurelli AT
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11660-5. PubMed ID: 26290580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the metabolism of HEK-293 cells using lactate isotopomer analysis.
    Henry O; Jolicoeur M; Kamen A
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):263-73. PubMed ID: 20848294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistence Alters the Interaction between Chlamydia trachomatis and Its Host Cell.
    Brockett MR; Liechti GW
    Infect Immun; 2021 Jul; 89(8):e0068520. PubMed ID: 34001559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection.
    Clausen JD; Christiansen G; Holst HU; Birkelund S
    Mol Microbiol; 1997 Aug; 25(3):441-9. PubMed ID: 9302007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metalloprotease inhibitors GM6001 and TAPI-0 inhibit the obligate intracellular human pathogen Chlamydia trachomatis by targeting peptide deformylase of the bacterium.
    Balakrishnan A; Patel B; Sieber SA; Chen D; Pachikara N; Zhong G; Cravatt BF; Fan H
    J Biol Chem; 2006 Jun; 281(24):16691-9. PubMed ID: 16565079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.