BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 27997792)

  • 1. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex.
    Matsumoto S; Taguchi Y; Shimada A; Igura M; Kohda D
    Biochemistry; 2017 Jan; 56(4):602-611. PubMed ID: 27997792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of an archaeal oligosaccharyltransferase provides insight into the strict exclusion of proline from the N-glycosylation sequon.
    Taguchi Y; Yamasaki T; Ishikawa M; Kawasaki Y; Yukimura R; Mitani M; Hirata K; Kohda D
    Commun Biol; 2021 Aug; 4(1):941. PubMed ID: 34354228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective control of oligosaccharide transfer efficiency for the N-glycosylation sequon by a point mutation in oligosaccharyltransferase.
    Igura M; Kohda D
    J Biol Chem; 2011 Apr; 286(15):13255-60. PubMed ID: 21357684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases.
    Matsumoto S; Shimada A; Kohda D
    BMC Struct Biol; 2013 Jul; 13():11. PubMed ID: 23815857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of the preferences for the amino acid residues flanking archaeal N-linked glycosylation sites.
    Igura M; Kohda D
    Glycobiology; 2011 May; 21(5):575-83. PubMed ID: 21115605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution.
    Matsumoto S; Igura M; Nyirenda J; Matsumoto M; Yuzawa S; Noda N; Inagaki F; Kohda D
    Biochemistry; 2012 May; 51(20):4157-66. PubMed ID: 22559858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB.
    Lizak C; Gerber S; Zinne D; Michaud G; Schubert M; Chen F; Bucher M; Darbre T; Zenobi R; Reymond JL; Locher KP
    J Biol Chem; 2014 Jan; 289(2):735-46. PubMed ID: 24275651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structure of a bacterial oligosaccharyltransferase.
    Lizak C; Gerber S; Numao S; Aebi M; Locher KP
    Nature; 2011 Jun; 474(7351):350-5. PubMed ID: 21677752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance.
    Nyirenda J; Matsumoto S; Saitoh T; Maita N; Noda NN; Inagaki F; Kohda D
    Structure; 2013 Jan; 21(1):32-41. PubMed ID: 23177926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis.
    Gerber S; Lizak C; Michaud G; Bucher M; Darbre T; Aebi M; Reymond JL; Locher KP
    J Biol Chem; 2013 Mar; 288(13):8849-61. PubMed ID: 23382388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences.
    Ollis AA; Chai Y; Natarajan A; Perregaux E; Jaroentomeechai T; Guarino C; Smith J; Zhang S; DeLisa MP
    Sci Rep; 2015 Oct; 5():15237. PubMed ID: 26482295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One flexible loop in OST lassos both substrates.
    Shrimal S; Cherepanova NA; Gilmore R
    Nat Struct Mol Biol; 2017 Dec; 24(12):1009-1010. PubMed ID: 29215637
    [No Abstract]   [Full Text] [Related]  

  • 13. Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases.
    Kohda D
    Adv Exp Med Biol; 2018; 1104():171-199. PubMed ID: 30484249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Insight into the Mechanism of
    Mohanty S; Chaudhary BP; Zoetewey D
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases.
    Maita N; Nyirenda J; Igura M; Kamishikiryo J; Kohda D
    J Biol Chem; 2010 Feb; 285(7):4941-50. PubMed ID: 20007322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues Comprising the Enhanced Aromatic Sequon Influence Protein N-Glycosylation Efficiency.
    Huang YW; Yang HI; Wu YT; Hsu TL; Lin TW; Kelly JW; Wong CH
    J Am Chem Soc; 2017 Sep; 139(37):12947-12955. PubMed ID: 28820257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM is uncovering the mechanism of eukaryotic protein N-glycosylation.
    Bai L; Li H
    FEBS J; 2019 May; 286(9):1638-1644. PubMed ID: 30450807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation.
    Lizak C; Gerber S; Michaud G; Schubert M; Fan YY; Bucher M; Darbre T; Aebi M; Reymond JL; Locher KP
    Nat Commun; 2013; 4():2627. PubMed ID: 24149797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-State Exchange Dynamics in Membrane-Embedded Oligosaccharyltransferase Observed in Real-Time by High-Speed AFM.
    Kawasaki Y; Ariyama H; Motomura H; Fujinami D; Noshiro D; Ando T; Kohda D
    J Mol Biol; 2020 Nov; 432(22):5951-5965. PubMed ID: 33010307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB.
    Ihssen J; Kowarik M; Wiesli L; Reiss R; Wacker M; Thöny-Meyer L
    BMC Biotechnol; 2012 Sep; 12():67. PubMed ID: 23006740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.