These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 27997854)

  • 41. Recurrent Clostridium difficile infections: the importance of the intestinal microbiota.
    Zanella Terrier MC; Simonet ML; Bichard P; Frossard JL
    World J Gastroenterol; 2014 Jun; 20(23):7416-23. PubMed ID: 24966611
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gut microbiota changes associated with
    Gonzales-Luna AJ; Carlson TJ; Garey KW
    Gut Microbes; 2023; 15(1):2223345. PubMed ID: 37318134
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria.
    Passmore IJ; Letertre MPM; Preston MD; Bianconi I; Harrison MA; Nasher F; Kaur H; Hong HA; Baines SD; Cutting SM; Swann JR; Wren BW; Dawson LF
    PLoS Pathog; 2018 Sep; 14(9):e1007191. PubMed ID: 30208103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders?
    Zhou Y; Xu H; Huang H; Li Y; Chen H; He J; Du Y; Chen Y; Zhou Y; Nie Y
    Biomed Res Int; 2019; 2019():3469754. PubMed ID: 31467881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of microbiota and innate immunity in recurrent Clostridium difficile infection.
    Bibbò S; Lopetuso LR; Ianiro G; Di Rienzo T; Gasbarrini A; Cammarota G
    J Immunol Res; 2014; 2014():462740. PubMed ID: 24995345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response.
    Yang H; Wu X; Li X; Zang W; Zhou Z; Zhou Y; Cui W; Kou Y; Wang L; Hu A; Wu L; Yin Z; Chen Q; Chen Y; Huang Z; Wang Y; Gu B
    Nat Commun; 2024 Apr; 15(1):2842. PubMed ID: 38565558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology.
    Khoruts A; Weingarden AR
    Immunol Lett; 2014 Dec; 162(2 Pt A):77-81. PubMed ID: 25106113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Possibilities of therapeutic manipulation of the gut microbiota].
    Drastich P; Bajer L; Kverka M
    Vnitr Lek; 2018; 64(6):665-671. PubMed ID: 30223665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prevention and treatment of
    Eliakim-Raz N; Bishara J
    Hum Vaccin Immunother; 2019; 15(6):1453-1456. PubMed ID: 29781761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disease Progression and Resolution in Rodent Models of Clostridium difficile Infection and Impact of Antitoxin Antibodies and Vancomycin.
    Warn P; Thommes P; Sattar A; Corbett D; Flattery A; Zhang Z; Black T; Hernandez LD; Therien AG
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6471-6482. PubMed ID: 27527088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance.
    Ferreyra JA; Wu KJ; Hryckowian AJ; Bouley DM; Weimer BC; Sonnenburg JL
    Cell Host Microbe; 2014 Dec; 16(6):770-7. PubMed ID: 25498344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dietary Xanthan Gum Alters Antibiotic Efficacy against the Murine Gut Microbiota and Attenuates
    Schnizlein MK; Vendrov KC; Edwards SJ; Martens EC; Young VB
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31915217
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis.
    Gregory AL; Pensinger DA; Hryckowian AJ
    PLoS Pathog; 2021 Oct; 17(10):e1009959. PubMed ID: 34673840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional profile of host microbiome indicates
    Nzabarushimana E; Tang H
    Gut Microbes; 2022; 14(1):2135963. PubMed ID: 36289064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Current and future trends in clostridioides (clostridium) difficile infection management.
    Khanna S; Gerding DN
    Anaerobe; 2019 Aug; 58():95-102. PubMed ID: 31054313
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model.
    Hryckowian AJ; Van Treuren W; Smits SA; Davis NM; Gardner JO; Bouley DM; Sonnenburg JL
    Nat Microbiol; 2018 Jun; 3(6):662-669. PubMed ID: 29686297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Osmotic Laxative Renders Mice Susceptible to Prolonged Clostridioides difficile Colonization and Hinders Clearance.
    Tomkovich S; Taylor A; King J; Colovas J; Bishop L; McBride K; Royzenblat S; Lesniak NA; Bergin IL; Schloss PD
    mSphere; 2021 Oct; 6(5):e0062921. PubMed ID: 34585964
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gut microbiota in burned patients with Clostridioides difficile infection.
    Shoaei P; Shojaei H; Siadat SD; Moshiri A; Vakili B; Yadegari S; Ataei B; Khorvash F
    Burns; 2022 Aug; 48(5):1120-1129. PubMed ID: 34924229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From stool transplants to next-generation microbiota therapeutics.
    Petrof EO; Khoruts A
    Gastroenterology; 2014 May; 146(6):1573-1582. PubMed ID: 24412527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The potential for emerging therapeutic options for Clostridium difficile infection.
    Mathur H; Rea MC; Cotter PD; Ross RP; Hill C
    Gut Microbes; 2014; 5(6):696-710. PubMed ID: 25564777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.