These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27999115)

  • 1. The performance of deleteriousness prediction scores for rare non-protein-changing single nucleotide variants in human genes.
    Liu X; Li C; Boerwinkle E
    J Med Genet; 2017 Feb; 54(2):134-144. PubMed ID: 27999115
    [No Abstract]   [Full Text] [Related]  

  • 2. On beyond GWAS.
    Nat Genet; 2010 Jul; 42(7):551. PubMed ID: 20581872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Prediction of Deleteriousness for Nonsynonymous and Splice-Altering Single Nucleotide Variants in the Human Genome.
    Jian X; Liu X
    Methods Mol Biol; 2017; 1498():191-197. PubMed ID: 27709577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of SNP calling using single and multiple-sample calling algorithms by validation against array base genotyping and Mendelian inheritance.
    Kumar P; Al-Shafai M; Al Muftah WA; Chalhoub N; Elsaid MF; Aleem AA; Suhre K
    BMC Res Notes; 2014 Oct; 7():747. PubMed ID: 25339461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies.
    Teber ET; Liu JY; Ballouz S; Fatkin D; Wouters MA
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S69. PubMed ID: 19208173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HapBoost: a fast approach to boosting haplotype association analyses in genome-wide association studies.
    Wan X; Yang C; Yang Q; Zhao H; Yu W
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):207-12. PubMed ID: 23702557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease liability prediction from large scale genotyping data using classifiers with a reject option.
    Quevedo JR; Bahamonde A; Pérez-Enciso M; Luaces O
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):88-97. PubMed ID: 21383414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Clinical use of the analysis of the entire genome].
    Cornel MC; de Wert G; Meijers-Heijboer H
    Ned Tijdschr Geneeskd; 2011; 155():A2847. PubMed ID: 21262012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning a genome-wide association study: points to consider.
    Hakonarson H; Grant SF
    Ann Med; 2011; 43(6):451-60. PubMed ID: 21595511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association studies.
    Yang TH; Kon M; DeLisi C
    Methods Mol Biol; 2013; 939():233-51. PubMed ID: 23192550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association studies.
    Al-Chalabi A
    Cold Spring Harb Protoc; 2009 Dec; 2009(12):pdb.top66. PubMed ID: 20150103
    [No Abstract]   [Full Text] [Related]  

  • 12. Asthma genetics and genomics 2009.
    Weiss ST; Raby BA; Rogers A
    Curr Opin Genet Dev; 2009 Jun; 19(3):279-82. PubMed ID: 19481925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding cancer predisposition genes with ultra-rare cancer-exclusive human variations.
    Rasnic R; Linial N; Linial M
    Sci Rep; 2020 Aug; 10(1):13462. PubMed ID: 32778766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. regBase: whole genome base-wise aggregation and functional prediction for human non-coding regulatory variants.
    Zhang S; He Y; Liu H; Zhai H; Huang D; Yi X; Dong X; Wang Z; Zhao K; Zhou Y; Wang J; Yao H; Xu H; Yang Z; Sham PC; Chen K; Li MJ
    Nucleic Acids Res; 2019 Dec; 47(21):e134. PubMed ID: 31511901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical assessment incorporating a personal genome.
    Pierce BL; Ahsan H
    Lancet; 2010 Sep; 376(9744):869; author reply 869-70. PubMed ID: 20833292
    [No Abstract]   [Full Text] [Related]  

  • 16. A gene-centric approach to genome-wide association studies.
    Jorgenson E; Witte JS
    Nat Rev Genet; 2006 Nov; 7(11):885-91. PubMed ID: 17047687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Don't throw the baby out with the bathwater: enabling a bottom-up approach in genome-wide association studies.
    McGuire SE; McGuire AL
    Genome Res; 2008 Nov; 18(11):1683-5. PubMed ID: 18974262
    [No Abstract]   [Full Text] [Related]  

  • 18. Examination of the current top candidate genes for AD in a genome-wide association study.
    Feulner TM; Laws SM; Friedrich P; Wagenpfeil S; Wurst SH; Riehle C; Kuhn KA; Krawczak M; Schreiber S; Nikolaus S; Förstl H; Kurz A; Riemenschneider M
    Mol Psychiatry; 2010 Jul; 15(7):756-66. PubMed ID: 19125160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel SVM-ID3 hybrid feature selection method to build a disease model for melanoma using integrated genotyping and phenotype data from dbGaP.
    Son YA; Yücebaş SC
    Stud Health Technol Inform; 2014; 205():501-5. PubMed ID: 25160235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autism genetics: emerging data from genome-wide copy-number and single nucleotide polymorphism scans.
    Weiss LA
    Expert Rev Mol Diagn; 2009 Nov; 9(8):795-803. PubMed ID: 19895225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.