These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27999123)

  • 21. beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons.
    Chen C
    Biochem Biophys Res Commun; 2005 Dec; 338(4):1913-9. PubMed ID: 16289381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK.
    Huddleston AT; Tang W; Takeshima H; Hamilton SL; Klann E
    J Neurophysiol; 2008 Mar; 99(3):1565-71. PubMed ID: 18199822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soluble Oligomers Require a Ganglioside to Trigger Neuronal Calcium Overload.
    Cascella R; Evangelisti E; Bigi A; Becatti M; Fiorillo C; Stefani M; Chiti F; Cecchi C
    J Alzheimers Dis; 2017; 60(3):923-938. PubMed ID: 28922156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca(2+)-activated ion currents triggered by ryanodine receptor-mediated Ca(2+) release control firing of inhibitory neurons in the prepositus hypoglossi nucleus.
    Saito Y; Yanagawa Y
    J Neurophysiol; 2013 Jan; 109(2):389-404. PubMed ID: 23100137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes.
    Holmes WR; Levy WB
    J Neurophysiol; 1990 May; 63(5):1148-68. PubMed ID: 2162921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of excitability in tonic firing substantia gelatinosa neurons of the spinal cord by small-conductance Ca(2+)-activated K(+) channels.
    Yang K
    Neuropharmacology; 2016 Jun; 105():15-24. PubMed ID: 26777279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19-7 cells.
    Huang CW; Huang CC; Wu SN
    J Pharmacol Exp Ther; 2007 Apr; 321(1):98-106. PubMed ID: 17255467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage-clamp analysis of the potentiation of the slow Ca2+-activated K+ current in hippocampal pyramidal neurons.
    Borde M; Bonansco C; Fernández de Sevilla D; Le Ray D; Buño W
    Hippocampus; 2000; 10(2):198-206. PubMed ID: 10791842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Big-conductance Ca
    Parajuli SP; Zheng YM; Levin R; Wang YX
    Channels (Austin); 2016 Sep; 10(5):355-364. PubMed ID: 27101440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons.
    Wang W; Zhang K; Yan S; Li A; Hu X; Zhang L; Liu C
    Neuropharmacology; 2011 May; 60(6):901-9. PubMed ID: 21272594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.
    Song B; Marvizón JC
    Neuroscience; 2005; 136(2):549-62. PubMed ID: 16203108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing.
    Irie T; Trussell LO
    Neuron; 2017 Nov; 96(4):856-870.e4. PubMed ID: 29144974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3.
    Scala F; Fusco S; Ripoli C; Piacentini R; Li Puma DD; Spinelli M; Laezza F; Grassi C; D'Ascenzo M
    Neurobiol Aging; 2015 Feb; 36(2):886-900. PubMed ID: 25541422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia.
    Kron M; Müller M
    Neuroscience; 2010 Nov; 171(1):300-15. PubMed ID: 20732392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanodomains of single Ca2+ channels contribute to action potential repolarization in cortical neurons.
    Müller A; Kukley M; Uebachs M; Beck H; Dietrich D
    J Neurosci; 2007 Jan; 27(3):483-95. PubMed ID: 17234581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+-independent, but voltage- and activity-dependent regulation of the NMDA receptor outward K+ current in mouse cortical neurons.
    Ichinose T; Yu S; Wang XQ; Yu SP
    J Physiol; 2003 Sep; 551(Pt 2):403-17. PubMed ID: 12860921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amyloid-β(25-35) Modulates the Expression of GirK and KCNQ Channel Genes in the Hippocampus.
    Mayordomo-Cava J; Yajeya J; Navarro-López JD; Jiménez-Díaz L
    PLoS One; 2015; 10(7):e0134385. PubMed ID: 26218288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations in potassium currents may trigger neurodegeneration in murine scrapie.
    Johnston AR; Fraser JR; Jeffrey M; MacLeod N
    Exp Neurol; 1998 Jun; 151(2):326-33. PubMed ID: 9628767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional expression of large-conductance Ca2+-activated potassium channels in lateral globus pallidus neurons.
    Song X; Su W; Chen L; Ji JJ
    Neuroscience; 2010 Sep; 169(4):1548-56. PubMed ID: 20600663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.