BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27999205)

  • 21. Enhancing chemosensitivity of PANC1 pancreatic cancer cells to gemcitabine using ANGTPL4, Notch1 and NF-κβ1 siRNAs.
    Al-Kadash A; Alshaer W; Mahmoud IS; Wehaibi S; Zihlif M
    Future Sci OA; 2024; 10(1):FSO918. PubMed ID: 38817387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of pancreatic cancer cell growth.
    Adrian TE
    Cell Mol Life Sci; 2007 Oct; 64(19-20):2512-21. PubMed ID: 17676272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting wild-type IDH1 enhances chemosensitivity in pancreatic cancer.
    Zarei M; Hajihassani O; Hue JJ; Graor HJ; Rothermel LD; Winter JM
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research progress in the establishment of pancreatic cancer models and preclinical applications.
    Wu W; Wen K; Zhong Y
    Cancer Innov; 2022 Oct; 1(3):207-219. PubMed ID: 38089760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular Repair of Synthetic Analogs of Oxidative DNA Damage Reveals a Key Structure-Activity Relationship of the Cancer-Associated MUTYH DNA Repair Glycosylase.
    Conlon SG; Khuu C; Trasviña-Arenas CH; Xia T; Hamm ML; Raetz AG; David SS
    ACS Cent Sci; 2024 Feb; 10(2):291-301. PubMed ID: 38435525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli.
    Aralov AV; Gubina N; Cabrero C; Tsvetkov VB; Turaev AV; Fedeles BI; Croy RG; Isaakova EA; Melnik D; Dukova S; Ryazantsev DY; Khrulev AA; Varizhuk AM; González C; Zatsepin TS; Essigmann JM
    Nucleic Acids Res; 2022 Apr; 50(6):3056-3069. PubMed ID: 35234900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY.
    Majumdar C; McKibbin PL; Krajewski AE; Manlove AH; Lee JK; David SS
    J Am Chem Soc; 2020 Dec; 142(48):20340-20350. PubMed ID: 33202125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity.
    Zhu RY; Majumdar C; Khuu C; De Rosa M; Opresko PL; David SS; Kool ET
    ACS Cent Sci; 2020 Oct; 6(10):1735-1742. PubMed ID: 33145410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Basis for Finding OG Lesions and Avoiding Undamaged G by the DNA Glycosylase MutY.
    Russelburg LP; O'Shea Murray VL; Demir M; Knutsen KR; Sehgal SL; Cao S; David SS; Horvath MP
    ACS Chem Biol; 2020 Jan; 15(1):93-102. PubMed ID: 31829624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel discoveries targeting gemcitabine-based chemoresistance and new therapies in pancreatic cancer: How far are we from the destination?
    Luo W; Yang G; Qiu J; Luan J; Zhang Y; You L; Feng M; Zhao F; Liu Y; Cao Z; Zheng L; Zhang T; Zhao Y
    Cancer Med; 2019 Oct; 8(14):6403-6413. PubMed ID: 31475468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gemcitabine resistance in pancreatic ductal adenocarcinoma.
    Binenbaum Y; Na'ara S; Gil Z
    Drug Resist Updat; 2015 Nov; 23():55-68. PubMed ID: 26690340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.
    Sharbeen G; Youkhana J; Mawson A; McCarroll J; Nunez A; Biankin A; Johns A; Goldstein D; Phillips P
    Oncotarget; 2017 Feb; 8(6):9216-9229. PubMed ID: 27999205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo.
    Zhi X; Chen W; Xue F; Liang C; Chen BW; Zhou Y; Wen L; Hu L; Shen J; Bai X; Liang T
    Oncotarget; 2015 Sep; 6(28):26230-41. PubMed ID: 26213847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melittin inhibits tumor growth and decreases resistance to gemcitabine by downregulating cholesterol pathway gene CLU in pancreatic ductal adenocarcinoma.
    Wang X; Xie J; Lu X; Li H; Wen C; Huo Z; Xie J; Shi M; Tang X; Chen H; Peng C; Fang Y; Deng X; Shen B
    Cancer Lett; 2017 Jul; 399():1-9. PubMed ID: 28428074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.
    McDonald PC; Chafe SC; Brown WS; Saberi S; Swayampakula M; Venkateswaran G; Nemirovsky O; Gillespie JA; Karasinska JM; Kalloger SE; Supuran CT; Schaeffer DF; Bashashati A; Shah SP; Topham JT; Yapp DT; Li J; Renouf DJ; Stanger BZ; Dedhar S
    Gastroenterology; 2019 Sep; 157(3):823-837. PubMed ID: 31078621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered Gemcitabine and Nab-paclitaxel Scheduling Improves Therapeutic Efficacy Compared with Standard Concurrent Treatment in Preclinical Models of Pancreatic Cancer.
    Wolfe AR; Robb R; Hegazi A; Abushahin L; Yang L; Shyu DL; Trevino JG; Cruz-Monserrate Z; Jacob JR; Palanichamy K; Chakravarti A; Williams TM
    Clin Cancer Res; 2021 Jan; 27(2):554-565. PubMed ID: 33087331
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.