These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 27999441)
1. In vitro and in vivo activities of the diazabicyclooctane OP0595 against AmpC-derepressed Pseudomonas aeruginosa. Morinaka A; Tsutsumi Y; Yamada K; Takayama Y; Sakakibara S; Takata T; Abe T; Furuuchi T; Inamura S; Sakamaki Y; Tsujii N; Ida T J Antibiot (Tokyo); 2017 Mar; 70(3):246-250. PubMed ID: 27999441 [TBL] [Abstract][Full Text] [Related]
2. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam 'enhancer'. Morinaka A; Tsutsumi Y; Yamada M; Suzuki K; Watanabe T; Abe T; Furuuchi T; Inamura S; Sakamaki Y; Mitsuhashi N; Ida T; Livermore DM J Antimicrob Chemother; 2015 Oct; 70(10):2779-86. PubMed ID: 26089439 [TBL] [Abstract][Full Text] [Related]
3. In Vitro and In Vivo Activities of OP0595, a New Diazabicyclooctane, against CTX-M-15-Positive Escherichia coli and KPC-Positive Klebsiella pneumoniae. Morinaka A; Tsutsumi Y; Yamada K; Takayama Y; Sakakibara S; Takata T; Abe T; Furuuchi T; Inamura S; Sakamaki Y; Tsujii N; Ida T Antimicrob Agents Chemother; 2016 May; 60(5):3001-6. PubMed ID: 26953205 [TBL] [Abstract][Full Text] [Related]
4. Meropenem-nacubactam activity against AmpC-overproducing and KPC-expressing Pseudomonas aeruginosa in a neutropenic murine lung infection model. Asempa TE; Motos A; Abdelraouf K; Bissantz C; Zampaloni C; Nicolau DP Int J Antimicrob Agents; 2020 Feb; 55(2):105838. PubMed ID: 31705960 [TBL] [Abstract][Full Text] [Related]
5. Activity of OP0595/β-lactam combinations against Gram-negative bacteria with extended-spectrum, AmpC and carbapenem-hydrolysing β-lactamases. Livermore DM; Mushtaq S; Warner M; Woodford N J Antimicrob Chemother; 2015 Nov; 70(11):3032-41. PubMed ID: 26311835 [TBL] [Abstract][Full Text] [Related]
6. Interactions of OP0595, a Novel Triple-Action Diazabicyclooctane, with β-Lactams against OP0595-Resistant Enterobacteriaceae Mutants. Livermore DM; Warner M; Mushtaq S; Woodford N Antimicrob Agents Chemother; 2016 Jan; 60(1):554-60. PubMed ID: 26552987 [TBL] [Abstract][Full Text] [Related]
10. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent "β-Lactam Enhancer" Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Moya B; Barcelo IM; Bhagwat S; Patel M; Bou G; Papp-Wallace KM; Bonomo RA; Oliver A Antimicrob Agents Chemother; 2017 Jun; 61(6):. PubMed ID: 28289035 [TBL] [Abstract][Full Text] [Related]
11. Efficacy and Pharmacokinetics of the Combination of OP0595 and Cefepime in a Mouse Model of Pneumonia Caused by Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae. Kaku N; Kosai K; Takeda K; Uno N; Morinaga Y; Hasegawa H; Miyazaki T; Izumikawa K; Mukae H; Yanagihara K Antimicrob Agents Chemother; 2017 Jul; 61(7):. PubMed ID: 28507106 [TBL] [Abstract][Full Text] [Related]
12. Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea. Cho HH; Kwon GC; Kim S; Koo SH J Microbiol Biotechnol; 2015 Jul; 25(7):1154-62. PubMed ID: 25907063 [TBL] [Abstract][Full Text] [Related]
13. Activity of ceftazidime/avibactam against problem Enterobacteriaceae and Pseudomonas aeruginosa in the UK, 2015-16. Livermore DM; Meunier D; Hopkins KL; Doumith M; Hill R; Pike R; Staves P; Woodford N J Antimicrob Chemother; 2018 Mar; 73(3):648-657. PubMed ID: 29228202 [TBL] [Abstract][Full Text] [Related]
14. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Moya B; Zamorano L; Juan C; Pérez JL; Ge Y; Oliver A Antimicrob Agents Chemother; 2010 Mar; 54(3):1213-7. PubMed ID: 20086158 [TBL] [Abstract][Full Text] [Related]
16. Novel β-lactam/β-lactamase inhibitor combinations show limited activity against Indian carbapenem-resistant Pseudomonas aeruginosa isolates due to conundrum of diverse resistance mechanisms. Joshi PR; Joshi SD; Periasamy H; Bakthavatchalam YD; Velmurugan A; Veeraraghavan B; Kharat AS Int J Antimicrob Agents; 2024 Aug; 64(2):107249. PubMed ID: 38906486 [No Abstract] [Full Text] [Related]
17. Diversity of β-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study. Llanes C; Pourcel C; Richardot C; Plésiat P; Fichant G; Cavallo JD; Mérens A; J Antimicrob Chemother; 2013 Aug; 68(8):1763-71. PubMed ID: 23629014 [TBL] [Abstract][Full Text] [Related]
18. Impact of Acquired Broad Spectrum β-Lactamases on Susceptibility to Novel Combinations Made of β-Lactams (Aztreonam, Cefepime, Meropenem, and Imipenem) and Novel β-Lactamase Inhibitors in Escherichia coli and Pseudomonas aeruginosa. Le Terrier C; Nordmann P; Freret C; Seigneur M; Poirel L Antimicrob Agents Chemother; 2023 Jul; 67(7):e0033923. PubMed ID: 37255469 [TBL] [Abstract][Full Text] [Related]
19. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa. Barceló IM; Jordana-Lluch E; Escobar-Salom M; Torrens G; Fraile-Ribot PA; Cabot G; Mulet X; Zamorano L; Juan C; Oliver A Microbiol Spectr; 2022 Oct; 10(5):e0270022. PubMed ID: 36214681 [TBL] [Abstract][Full Text] [Related]
20. Activity of Ceftolozane-Tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae Isolates Collected from Respiratory Tract Specimens of Hospitalized Patients in the United States during 2013 to 2015. Castanheira M; Duncan LR; Mendes RE; Sader HS; Shortridge D Antimicrob Agents Chemother; 2018 Mar; 62(3):. PubMed ID: 29263073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]