BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27999587)

  • 1. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits.
    Zhao J; Bodner G; Rewald B
    Front Plant Sci; 2016; 7():1864. PubMed ID: 27999587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root traits of European Vicia faba cultivars-Using machine learning to explore adaptations to agroclimatic conditions.
    Zhao J; Sykacek P; Bodner G; Rewald B
    Plant Cell Environ; 2018 Sep; 41(9):1984-1996. PubMed ID: 28857245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.
    Zhao J; Bodner G; Rewald B; Leitner D; Nagel KA; Nakhforoosh A
    J Exp Bot; 2017 Feb; 68(5):965-982. PubMed ID: 28168270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.
    Guo D; Juan J; Chang L; Zhang J; Huang D
    Sci Rep; 2017 Aug; 7(1):8303. PubMed ID: 28811508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotyping seedlings for selection of root system architecture in alfalfa (Medicago sativa L.).
    Bucciarelli B; Xu Z; Ao S; Cao Y; Monteros MJ; Topp CN; Samac DA
    Plant Methods; 2021 Dec; 17(1):125. PubMed ID: 34876178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification.
    Rahaman MM; Ahsan MA; Chen M
    Sci Rep; 2019 Dec; 9(1):19526. PubMed ID: 31862925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective Phenotyping of Root System Architecture Using Image Augmentation and Machine Learning in Alfalfa (Medicago sativa L.).
    Xu Z; York LM; Seethepalli A; Bucciarelli B; Cheng H; Samac DA
    Plant Phenomics; 2022; 2022():9879610. PubMed ID: 35479182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Effective Class-Balancing Techniques for CNN-Based Assessment of Aphanomyces Root Rot Resistance in Pea (
    Divyanth LG; Marzougui A; González-Bernal MJ; McGee RJ; Rubiales D; Sankaran S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root Differentiation of Agricultural Plant Cultivars and Proveniences Using FTIR Spectroscopy.
    Legner N; Meinen C; Rauber R
    Front Plant Sci; 2018; 9():748. PubMed ID: 29951073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers.
    Meisrimler CN; Wienkoop S; Lüthje S
    Proteomes; 2017 Mar; 5(1):. PubMed ID: 28257117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput phenotyping of seminal root traits in wheat.
    Richard CA; Hickey LT; Fletcher S; Jennings R; Chenu K; Christopher JT
    Plant Methods; 2015; 11():13. PubMed ID: 25750658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to
    Desgroux A; Baudais VN; Aubert V; Le Roy G; de Larambergue H; Miteul H; Aubert G; Boutet G; Duc G; Baranger A; Burstin J; Manzanares-Dauleux M; Pilet-Nayel ML; Bourion V
    Front Plant Sci; 2017; 8():2195. PubMed ID: 29354146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean.
    Duc NT; Ramlal A; Rajendran A; Raju D; Lal SK; Kumar S; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1206357. PubMed ID: 37771485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the three-dimensional root system architecture using an automated rotating imaging system.
    Wu Q; Wu J; Hu P; Zhang W; Ma Y; Yu K; Guo Y; Cao J; Li H; Li B; Yao Y; Cao H; Zhang W
    Plant Methods; 2023 Feb; 19(1):11. PubMed ID: 36732764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based Clusters.
    Falk KG; Jubery TZ; O'Rourke JA; Singh A; Sarkar S; Ganapathysubramanian B; Singh AK
    Plant Phenomics; 2020; 2020():1925495. PubMed ID: 33313543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean.
    Yoosefzadeh-Najafabadi M; Earl HJ; Tulpan D; Sulik J; Eskandari M
    Front Plant Sci; 2020; 11():624273. PubMed ID: 33510761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.