These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 27999972)
1. Decreased formation of branched-chain short fatty acids in Bacillus amyloliquefaciens by metabolic engineering. Chen Y; Liu M; Chen S; Wei X Biotechnol Lett; 2017 Apr; 39(4):529-533. PubMed ID: 27999972 [TBL] [Abstract][Full Text] [Related]
2. Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation. Cai D; Liu M; Wei X; Li X; Wang Q; Nomura CT; Chen S Appl Biochem Biotechnol; 2017 Mar; 181(3):1108-1122. PubMed ID: 27826807 [TBL] [Abstract][Full Text] [Related]
3. Identification of a Key Gene Involved in Branched-Chain Short Fatty Acids Formation in Natto by Transcriptional Analysis and Enzymatic Characterization in Bacillus subtilis. Hong C; Chen Y; Li L; Chen S; Wei X J Agric Food Chem; 2017 Mar; 65(8):1592-1597. PubMed ID: 28165735 [TBL] [Abstract][Full Text] [Related]
4. Isolation of the putative biosynthetic gene cluster of 1-deoxynojirimycin by Bacillus amyloliquefaciens 140N, its production and application to the fermentation of soybean paste. Seo MJ; Nam YD; Lee SY; Park SL; Yi SH; Lim SI Biosci Biotechnol Biochem; 2013; 77(2):398-401. PubMed ID: 23391926 [TBL] [Abstract][Full Text] [Related]
5. α-Glucosidase Inhibitory Activity of Fermented Okara Broth Started with the Strain Gao Y; Bian W; Fang Y; Du P; Liu X; Zhao X; Li F Molecules; 2022 Feb; 27(3):. PubMed ID: 35164396 [TBL] [Abstract][Full Text] [Related]
6. Physiological Effects and Organ Distribution of Bacillus amyloliquefaciens AS385 Culture Broth Powder Containing 1-Deoxynojirimycin in C57BL/6J Mice. Parida IS; Takasu S; Ito J; Ikeda R; Yamagishi K; Kimura T; Miyazawa T; Eitsuka T; Nakagawa K J Nutr Sci Vitaminol (Tokyo); 2019; 65(2):157-163. PubMed ID: 31061284 [TBL] [Abstract][Full Text] [Related]
7. Broad substrate specificity of phosphotransbutyrylase from Listeria monocytogenes: A potential participant in an alternative pathway for provision of acyl CoA precursors for fatty acid biosynthesis. Sirobhushanam S; Galva C; Sen S; Wilkinson BJ; Gatto C Biochim Biophys Acta; 2016 Sep; 1861(9 Pt A):1102-1110. PubMed ID: 27320015 [TBL] [Abstract][Full Text] [Related]
8. Production of branched-chain aroma compounds by Propionibacterium freudenreichii: links with the biosynthesis of membrane fatty acids. Dherbécourt J; Maillard MB; Catheline D; Thierry A J Appl Microbiol; 2008 Oct; 105(4):977-85. PubMed ID: 18444997 [TBL] [Abstract][Full Text] [Related]
9. Modular metabolic engineering of Bacillus amyloliquefaciens for high-level production of green biosurfactant iturin A. She M; Zhou H; Dong W; Xu Y; Gao L; Gao J; Yang Y; Yang Z; Cai D; Chen S Appl Microbiol Biotechnol; 2024 Apr; 108(1):311. PubMed ID: 38676716 [TBL] [Abstract][Full Text] [Related]
10. Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Onose S; Ikeda R; Nakagawa K; Kimura T; Yamagishi K; Higuchi O; Miyazawa T Food Chem; 2013 May; 138(1):516-23. PubMed ID: 23265519 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Li X; Zhang M; Lu Y; Wu N; Chen J; Ji Z; Zhan Y; Ma X; Chen J; Cai D; Chen S Synth Syst Biotechnol; 2023 Sep; 8(3):378-385. PubMed ID: 37692204 [TBL] [Abstract][Full Text] [Related]
12. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH). Jiang W; Jiang Y; Bentley GJ; Liu D; Xiao Y; Zhang F Biotechnol Bioeng; 2015 Aug; 112(8):1613-22. PubMed ID: 25788017 [TBL] [Abstract][Full Text] [Related]
13. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (Meitaoza). Zhu YP; Yamaki K; Yoshihashi T; Ohnishi Kameyama M; Li XT; Cheng YQ; Mori Y; Li LT J Agric Food Chem; 2010 Apr; 58(7):4097-103. PubMed ID: 20196601 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin. Takasu S; Parida IS; Onose S; Ito J; Ikeda R; Yamagishi K; Higuchi O; Tanaka F; Kimura T; Miyazawa T; Nakagawa K PLoS One; 2018; 13(6):e0199057. PubMed ID: 29897983 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of Green Production of Heme by Deleting Odor-Related Genes from Jiang C; Zou D; Jiang X; Han W; Chen K; Ma A; Wei X J Agric Food Chem; 2024 Jul; 72(29):16412-16422. PubMed ID: 38982640 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Bacillus cereus Growth and Toxin Production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products. Eom JS; Choi HS J Microbiol Biotechnol; 2016 Jan; 26(1):44-55. PubMed ID: 26528531 [TBL] [Abstract][Full Text] [Related]
18. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus. Beck HC; Hansen AM; Lauritsen FR J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537 [TBL] [Abstract][Full Text] [Related]
19. A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22. Yang J; Wu XB; Chen HL; Sun-Waterhouse D; Zhong HB; Cui C Food Chem; 2019 Jan; 272():396-403. PubMed ID: 30309561 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of S-adenosylmethionine production by deleting thrB gene and overexpressing SAM2 gene in Bacillus amyloliquefaciens. Jiang C; Ruan L; Wei X; Guo A Biotechnol Lett; 2020 Nov; 42(11):2293-2298. PubMed ID: 32577851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]