These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28000019)

  • 1. Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor.
    Elkahlout K; Alipour S; Eroglu I; Gunduz U; Yucel M
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):589-599. PubMed ID: 28000019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.
    Uyar B; Gürgan M; Özgür E; Gündüz U; Yücel M; Eroglu I
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1935-42. PubMed ID: 26164274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration and optimization of sequential microaerobic dark- and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91.
    Sağır E; Yucel M; Hallenbeck PC
    Bioresour Technol; 2018 Feb; 250():43-52. PubMed ID: 29153649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor.
    Hoekema S; Douma RD; Janssen M; Tramper J; Wijffels RH
    Biotechnol Bioeng; 2006 Nov; 95(4):613-26. PubMed ID: 16958141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent.
    Uyar B; Schumacher M; Gebicki J; Modigell M
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):603-6. PubMed ID: 19082632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H
    Turon V; Ollivier S; Cwicklinski G; Willison JC; Anxionnaz-Minvielle Z
    Biotechnol Bioeng; 2021 Mar; 118(3):1342-1354. PubMed ID: 33325030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation.
    Ma C; Wang X; Guo L; Wu X; Yang H
    Bioresour Technol; 2012 Aug; 118():490-5. PubMed ID: 22717568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the hydrogen producing potential of Rhodobacter capsulatus chemostat cultures: The application of deceleration-stat and gradient-stat methodology.
    Hoekema S; van Breukelen FR; Janssen M; Tramper J; Wijffels RH
    Biotechnol Prog; 2009; 25(5):1343-52. PubMed ID: 19626702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Investigation of the anaerobic metabolism of Rhodobacter capsulatus with a flux model].
    Golomysova AN; Ivanov PS
    Biofizika; 2011; 56(1):85-98. PubMed ID: 21442889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Ethanolamine as a nitrogen source on hydrogen production by Rhodobacter capsulatus.
    Katsuda T; Azuma M; Kato J; Takakuwa S; Ooshima H
    Biosci Biotechnol Biochem; 2000 Feb; 64(2):248-53. PubMed ID: 10737177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology.
    Ghosh D; Sobro IF; Hallenbeck PC
    Bioresour Technol; 2012 Nov; 123():199-206. PubMed ID: 22940320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene.
    Jahn A; Keuntje B; Dörffler M; Klipp W; Oelze J
    Appl Microbiol Biotechnol; 1994 Jan; 40(5):687-90. PubMed ID: 7765318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91.
    Abo-Hashesh M; Desaunay N; Hallenbeck PC
    Bioresour Technol; 2013 Jan; 128():513-7. PubMed ID: 23201907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput biosensor discriminates between different algal H2 -photoproducing strains.
    Wecker MS; Ghirardi ML
    Biotechnol Bioeng; 2014 Jul; 111(7):1332-40. PubMed ID: 24578287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.
    Morsy FM
    J Photochem Photobiol B; 2017 Apr; 169():1-6. PubMed ID: 28242562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis.
    Gürgan M; Erkal NA; Özgür E; Gündüz U; Eroglu I; Yücel M
    Int J Mol Sci; 2015 Jun; 16(6):13781-97. PubMed ID: 26086826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of glutamate concentration and pH for H production from volatile fatty acids by Rhodopseudomonas capsulata.
    Shi XY; Yu HQ
    Lett Appl Microbiol; 2005; 40(6):401-6. PubMed ID: 15892733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources.
    Erkal NA; Eser MG; Özgür E; Gündüz U; Eroglu I; Yücel M
    Arch Microbiol; 2019 Jul; 201(5):661-671. PubMed ID: 30796473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate.
    Silva FT; Moreira LR; de Souza Ferreira J; Batista FR; Cardoso VL
    Bioresour Technol; 2016 Jan; 200():72-80. PubMed ID: 26476167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-biological hydrogen production by a temperature-tolerant mutant of Rhodobacter capsulatus isolated by transposon mutagenesis.
    Wei X; Feng J; Cao W; Li Q; Guo L
    Bioresour Technol; 2021 Jan; 320(Pt A):124286. PubMed ID: 33120063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.