These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28000073)
21. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing. Shin S; Hyun J Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573 [TBL] [Abstract][Full Text] [Related]
22. Characterization and flocculation performance of a newly green flocculant derived from natural bagasse cellulose. Han Z; Huo J; Zhang X; Ngo HH; Guo W; Du Q; Zhang Y; Li C; Zhang D Chemosphere; 2022 Aug; 301():134615. PubMed ID: 35447202 [TBL] [Abstract][Full Text] [Related]
24. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Altmann J; Rehfeld D; Träder K; Sperlich A; Jekel M Water Res; 2016 Apr; 92():131-9. PubMed ID: 26849316 [TBL] [Abstract][Full Text] [Related]
25. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye. Zhao DH; Gao HW Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103 [TBL] [Abstract][Full Text] [Related]
26. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007 [TBL] [Abstract][Full Text] [Related]
27. Ionic cross-linking of cellulose nanofibers: an approach to enhance mechanical stability for dynamic adsorption. Muqeet M; Qureshi UA; Mahar RB; Khatri Z; Ahmed F; Kim IS Environ Sci Pollut Res Int; 2019 Oct; 26(28):28842-28851. PubMed ID: 31376130 [TBL] [Abstract][Full Text] [Related]
28. Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater. Ansari S; Alavi J; Yaseen ZM Environ Sci Pollut Res Int; 2018 Dec; 25(34):33978-33991. PubMed ID: 30280337 [TBL] [Abstract][Full Text] [Related]
29. Printing ink and paper recycling sources of TMDD in wastewater and rivers. Guedez AA; Püttmann W Sci Total Environ; 2014 Jan; 468-469():671-6. PubMed ID: 24061058 [TBL] [Abstract][Full Text] [Related]
30. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale. Löwenberg J; Zenker A; Krahnstöver T; Boehler M; Baggenstos M; Koch G; Wintgens T Water Res; 2016 May; 94():246-256. PubMed ID: 26963607 [TBL] [Abstract][Full Text] [Related]
31. 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Baniasadi H; Polez RT; Kimiaei E; Madani Z; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2021 Dec; 192():1098-1107. PubMed ID: 34666132 [TBL] [Abstract][Full Text] [Related]
32. Screening the Impact of Surfactants and Reaction Conditions on the De-Inkability of Different Printing Ink Systems for Plastic Packaging. Guo J; Luo C; Wittkowski C; Fehr I; Chong Z; Kitzberger M; Alassali A; Zhao X; Leineweber R; Feng Y; Kuchta K Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177366 [TBL] [Abstract][Full Text] [Related]
33. Effectively remove printing ink from plastic surface over quaternary ammonium-modified waste cooking oil. Ye X; Wu Z; Wang M; Lv Y; Huang X; Liu Y; Lin C Environ Technol; 2023 Mar; 44(8):1071-1082. PubMed ID: 34839791 [TBL] [Abstract][Full Text] [Related]
34. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Dai H; Huang H Carbohydr Polym; 2016 Sep; 148():1-10. PubMed ID: 27185109 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of cylindrical 3D cellulose nanofibril(CNF) aerogel for continuous removal of copper(Cu Hong HJ; Ban G; Kim HS; Jeong HS; Park MS Chemosphere; 2021 Sep; 278():130288. PubMed ID: 33823344 [TBL] [Abstract][Full Text] [Related]
36. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A Molecules; 2019 May; 24(9):. PubMed ID: 31075959 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of single-crystalline gold nanowires on cellulose nanofibers. He H; Chen R; Zhang L; Williams T; Fang X; Shen W J Colloid Interface Sci; 2020 Mar; 562():333-341. PubMed ID: 31855796 [TBL] [Abstract][Full Text] [Related]
38. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Sehaqui H; Mautner A; Perez de Larraya U; Pfenninger N; Tingaut P; Zimmermann T Carbohydr Polym; 2016 Jan; 135():334-40. PubMed ID: 26453885 [TBL] [Abstract][Full Text] [Related]
39. Melanized-Cationic Cellulose Nanofiber Foams for Bioinspired Removal of Cationic Dyes. Tran-Ly AN; De France KJ; Rupper P; Schwarze FWMR; Reyes C; Nyström G; Siqueira G; Ribera J Biomacromolecules; 2021 Nov; 22(11):4681-4690. PubMed ID: 34696590 [TBL] [Abstract][Full Text] [Related]
40. Assessment of wastes recycling for deinking purposes in ozone assisted green process. Amiri P; Behin J Environ Sci Pollut Res Int; 2020 Jun; 27(17):21859-21871. PubMed ID: 32285393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]