These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28000118)

  • 1. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.
    Sun X; Byrns S; Cheng I; Zheng B; Basu A
    J Med Syst; 2017 Feb; 41(2):24. PubMed ID: 28000118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2001; 81():417-23. PubMed ID: 11317782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a wireless sensor glove for surgical skills assessment.
    King RC; Atallah L; Lo BP; Yang GZ
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):673-9. PubMed ID: 19726263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling and evaluation of surgical performance using hidden Markov models.
    Megali G; Sinigaglia S; Tonet O; Dario P
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1911-9. PubMed ID: 17019854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating surgical dexterity during corneal suturing.
    Saleh GM; Voyatzis G; Hance J; Ratnasothy J; Darzi A
    Arch Ophthalmol; 2006 Sep; 124(9):1263-6. PubMed ID: 16966621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task decomposition of laparoscopic surgery for objective evaluation of surgical residents' learning curve using hidden Markov model.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Comput Aided Surg; 2002; 7(1):49-61. PubMed ID: 12173880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New possibilities in practical education of surgery].
    Kormos K; Sándor J; Haidegger T; Ferencz A; Csukás D; Bráth E; Szabó G; Wéber G
    Magy Seb; 2013 Oct; 66(5):256-62. PubMed ID: 24144818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of surgical technique using an inertial measurement unit.
    Watson RA
    Simul Healthc; 2013 Jun; 8(3):162-5. PubMed ID: 23250190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent dental training simulator with objective skill assessment and feedback.
    Rhienmora P; Haddawy P; Suebnukarn S; Dailey MN
    Artif Intell Med; 2011 Jun; 52(2):115-21. PubMed ID: 21641781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective skill evaluation for laparoscopic training based on motion analysis.
    Lin Z; Uemura M; Zecca M; Sessa S; Ishii H; Tomikawa M; Hashizume M; Takanishi A
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):977-85. PubMed ID: 23204271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden Markov models of minimally invasive surgery.
    Rosen J; Richards C; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2000; 70():279-85. PubMed ID: 10977557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerometer Measurement of Head Movement During Laparoscopic Surgery as a Tool to Evaluate Skill Development of Surgeons.
    Viriyasiripong S; Lopez A; Mandava SH; Lai WR; Mitchell GC; Boonjindasup A; Powers MK; Silberstein JL; Lee BR
    J Surg Educ; 2016; 73(4):589-94. PubMed ID: 26923103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided feedback of surgical knot tying using optical tracking.
    Watson RA
    J Surg Educ; 2012; 69(3):306-10. PubMed ID: 22483129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills.
    Rosen J; Hannaford B; Richards CG; Sinanan MN
    IEEE Trans Biomed Eng; 2001 May; 48(5):579-91. PubMed ID: 11341532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic analysis of surgical dexterity in intraocular surgery.
    Saleh GM; Lindfield D; Sim D; Tsesmetzoglou E; Gauba V; Gartry DS; Ghoussayni S
    Arch Ophthalmol; 2009 Jun; 127(6):758-62. PubMed ID: 19506194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verbal feedback from an expert is more effective than self-accessed feedback about motion efficiency in learning new surgical skills.
    Porte MC; Xeroulis G; Reznick RK; Dubrowski A
    Am J Surg; 2007 Jan; 193(1):105-10. PubMed ID: 17188099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of expert instruction and computer-based video training in teaching fundamental surgical skills to medical students.
    Nousiainen M; Brydges R; Backstein D; Dubrowski A
    Surgery; 2008 Apr; 143(4):539-44. PubMed ID: 18374052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.