These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28000118)

  • 21. Surgical skill acquisition with self-directed practice using computer-based video training.
    Jowett N; LeBlanc V; Xeroulis G; MacRae H; Dubrowski A
    Am J Surg; 2007 Feb; 193(2):237-42. PubMed ID: 17236854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing Arthroscopic Skills Using Wireless Elbow-Worn Motion Sensors.
    Kirby GS; Guyver P; Strickland L; Alvand A; Yang GZ; Hargrove C; Lo BP; Rees JL
    J Bone Joint Surg Am; 2015 Jul; 97(13):1119-27. PubMed ID: 26135079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel design and implementation of wheelchair navigation system using Leap Motion sensor.
    Fereidouni S; Sheikh Hassani M; Talebi A; Rezaie AH
    Disabil Rehabil Assist Technol; 2022 May; 17(4):442-448. PubMed ID: 32633585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motion analysis as a tool for the evaluation of oculoplastic surgical skill: evaluation of oculoplastic surgical skill.
    Saleh GM; Gauba V; Sim D; Lindfield D; Borhani M; Ghoussayni S
    Arch Ophthalmol; 2008 Feb; 126(2):213-6. PubMed ID: 18268212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Twelve tips for developing and implementing an effective surgical simulation programme.
    Bath J; Lawrence PF
    Med Teach; 2012; 34(3):192-7. PubMed ID: 22364450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multivariate autoregressive modeling of hand kinematics for laparoscopic skills assessment of surgical trainees.
    Loukas C; Georgiou E
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3289-97. PubMed ID: 21908250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Filling a void: developing a standard subjective assessment tool for surgical simulation through focused review of current practices.
    Seagull FJ; Rooney DM
    Surgery; 2014 Sep; 156(3):718-22. PubMed ID: 25175506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surgical motion analysis using discriminative interpretable patterns.
    Forestier G; Petitjean F; Senin P; Despinoy F; Huaulmé A; Fawaz HI; Weber J; Idoumghar L; Muller PA; Jannin P
    Artif Intell Med; 2018 Sep; 91():3-11. PubMed ID: 30172445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous, data-rich appraisal of surgical trainees' operative abilities: a novel approach for measuring performance and providing feedback.
    Roach PB; Roggin KK; Selkov G; Posner MC; Silverstein JC
    J Surg Educ; 2009; 66(5):255-63. PubMed ID: 20005497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.
    Duran C; Estrada S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2015 Feb; 61(2):535-41. PubMed ID: 25619579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Basic Surgical Skill Retention: Can Patriot Motion Tracking System Provide an Objective Measurement for it?
    Shaharan S; Nugent E; Ryan DM; Traynor O; Neary P; Buckley D
    J Surg Educ; 2016; 73(2):245-9. PubMed ID: 26572096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Objective performance measures using motion sensors on an endoscopic tool for evaluating skills in natural orifice translumenal endoscopic surgery (NOTES).
    Chin LI; Sankaranarayanan G; Dargar S; Matthes K; De S
    Stud Health Technol Inform; 2013; 184():78-84. PubMed ID: 23400134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchronized video and motion analysis for the assessment of procedures in the operating theater.
    Dosis A; Aggarwal R; Bello F; Moorthy K; Munz Y; Gillies D; Darzi A
    Arch Surg; 2005 Mar; 140(3):293-9. PubMed ID: 15781796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hand Motion Analysis Using Accelerometer-Based Sensors and Sheep's Head Model for Basic Training in Functional Endoscopic Sinus Surgery.
    Stan C; Ujvary PL; Blebea C; Tănase MI; Tănase M; Pop SS; Maniu AA; Cosgarea M; Rădeanu DG
    Cureus; 2024 May; 16(5):e59725. PubMed ID: 38841010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global Rating Scales and Motion Analysis Are Valid Proficiency Metrics in Virtual and Benchtop Knee Arthroscopy Simulators.
    Chang J; Banaszek DC; Gambrel J; Bardana D
    Clin Orthop Relat Res; 2016 Apr; 474(4):956-64. PubMed ID: 26282388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HMM assessment of quality of movement trajectory in laparoscopic surgery.
    Leong JJ; Nicolaou M; Atallah L; Mylonas GP; Darzi AW; Yang GZ
    Comput Aided Surg; 2007 Nov; 12(6):335-46. PubMed ID: 18066949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of surgical dexterity using motion analysis of simple bench tasks.
    Bann SD; Khan MS; Darzi AW
    World J Surg; 2003 Apr; 27(4):390-4. PubMed ID: 12658479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the Acquisition of Basic Technical Surgical Skills with VR-Based Simulation Coupled with Computer-Based Video Instruction.
    Rojas D; Kapralos B; Dubrowski A
    Stud Health Technol Inform; 2016; 220():323-8. PubMed ID: 27046599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hand motion patterns of Fundamentals of Laparoscopic Surgery certified and noncertified surgeons.
    Overby DW; Watson RA
    Am J Surg; 2014 Feb; 207(2):226-30. PubMed ID: 24216188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.