These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28000123)

  • 21. Cattle-derived microbial input to source water catchments: An experimental assessment of stream crossing modification.
    Smolders A; Rolls RJ; Ryder D; Watkinson A; Mackenzie M
    J Environ Manage; 2015 Jun; 156():143-9. PubMed ID: 25841195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the Pearl model to analyze fecal coliform data from conditionally approved shellfish harvest areas in seven Texas bays.
    Conte FS; Ahmadi A
    J Environ Health; 2014 Sep; 77(2):22-9. PubMed ID: 25226781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France.
    Gourmelon M; Caprais MP; Mieszkin S; Marti R; Wéry N; Jardé E; Derrien M; Jadas-Hécart A; Communal PY; Jaffrezic A; Pourcher AM
    Water Res; 2010 Sep; 44(16):4812-24. PubMed ID: 20709349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metals and pesticides in commercial bivalve mollusc production areas in the North and South Bays, Santa Catarina (Brazil).
    de Souza RV; Garbossa LH; Campos CJ; Vianna LF; Vanz A; Rupp GS
    Mar Pollut Bull; 2016 Apr; 105(1):377-84. PubMed ID: 26897362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long term reductions of faecal indicator organisms in Chichester Harbour (England) following sewerage infrastructure improvements in the catchment.
    Campos CJA; Teixeira Alves M; Walker DI
    Sci Total Environ; 2020 Sep; 733():139061. PubMed ID: 32446055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling faecal indicator concentrations in large rural catchments using land use and topographic data.
    Crowther J; Wyer MD; Bradford M; Kay D; Francis CA
    J Appl Microbiol; 2003; 94(6):962-73. PubMed ID: 12752803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable reduction in the flux of microbial compliance parameters from urban and arable land use to coastal bathing waters by a wetland ecosystem produced by a marine flood defence structure.
    Kay D; Wyer MD; Crowther J; Wilkinson J; Stapleton C; Glass P
    Water Res; 2005 Sep; 39(14):3320-32. PubMed ID: 16009396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.
    Fujioka RS
    Water Sci Technol; 2001; 44(7):181-8. PubMed ID: 11724486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial source tracking and shellfish contamination in a coastal catchment.
    Geary PM; Davies CM
    Water Sci Technol; 2003; 47(7-8):95-100. PubMed ID: 12793667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A short work-flow to effectively source faecal pollution in recreational waters - A case study.
    Tillett BJ; Sharley D; Almeida MIGS; Valenzuela I; Hoffmann AA; Pettigrove V
    Sci Total Environ; 2018 Dec; 644():1503-1510. PubMed ID: 30743863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The River Ruhr - an urban river under particular interest for recreational use and as a raw water source for drinking water: The collaborative research project "Safe Ruhr" - microbiological aspects.
    Strathmann M; Horstkott M; Koch C; Gayer U; Wingender J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):643-661. PubMed ID: 27495908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of PFGE to source tracking of faecal pollution in coastal recreation area: a case study in Aoshima Beach, Japan.
    Furukawa T; Yoshida T; Suzuki Y
    J Appl Microbiol; 2011 Mar; 110(3):688-96. PubMed ID: 21244588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processes driving the episodic flux of faecal indicator organisms in streams impacting on recreational and shellfish harvesting waters.
    Wilkinson J; Kay D; Wyer M; Jenkins A
    Water Res; 2006 Jan; 40(1):153-61. PubMed ID: 16386776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors influencing faecal contamination in coastal marinas.
    Sobsey MD; Perdue R; Overton M; Fisher J
    Water Sci Technol; 2003; 47(3):199-204. PubMed ID: 12639029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Into the deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal waters.
    Henry R; Schang C; Coutts S; Kolotelo P; Prosser T; Crosbie N; Grant T; Cottam D; O'Brien P; Deletic A; McCarthy D
    Water Res; 2016 Apr; 93():242-253. PubMed ID: 26921850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.
    Leight AK; Hood R; Wood R; Brohawn K
    Water Res; 2016 Feb; 89():270-81. PubMed ID: 26689664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges for bathing in rivers in terms of compliance with coliform standards. Case study in a large urbanized basin (das Velhas River, Brazil).
    von Sperling M; von Sperling E
    Water Sci Technol; 2013; 67(11):2534-42. PubMed ID: 23752386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the dispersion of viable and total Escherichia coli cells in the artificial semi-enclosed bathing area of Santa Marinella (Latium, Italy).
    Bonamano S; Madonia A; Borsellino C; Stefanì C; Caruso G; De Pasquale F; Piermattei V; Zappalà G; Marcelli M
    Mar Pollut Bull; 2015 Jun; 95(1):141-54. PubMed ID: 25912266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing for viral material in water of public bathing areas of the Danube during summer, Vojvodina, Serbia, 2014.
    Jovanović Galović A; Bijelović S; Milošević V; Hrnjaković Cvjetkovic I; Popović M; Kovačević G; Radovanov J; Dragić N; Petrović V
    Euro Surveill; 2016 Apr; 21(15):. PubMed ID: 27105473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a weight of evidence approach to identify sources of microbiological contamination in a shellfish-growing area with "Restricted" classification.
    Campos CJA; Kelly LT; Banks JC
    Environ Monit Assess; 2023 Mar; 195(4):529. PubMed ID: 37000235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.