BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28000383)

  • 1. A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation.
    Zhang Y; Wang J; Rong J; Diao J; Zhang J; Shi C; Liu H; Su D
    ChemSusChem; 2017 Jan; 10(2):353-358. PubMed ID: 28000383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient Metal-Free Catalyst for Oxidative Dehydrogenation Reaction: Activated Carbon Decorated with Few-Layer Graphene.
    Zhang Y; Diao J; Rong J; Zhang J; Xie J; Huang F; Jia Z; Liu H; Su DS
    ChemSusChem; 2018 Feb; 11(3):536-541. PubMed ID: 29292853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative purification of carbon nanotubes and its impact on catalytic performance in oxidative dehydrogenation reactions.
    Rinaldi A; Zhang J; Frank B; Su DS; Abd Hamid SB; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):254-60. PubMed ID: 20112335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane.
    Dathar GK; Tsai YT; Gierszal K; Xu Y; Liang C; Rondinone AJ; Overbury SH; Schwartz V
    ChemSusChem; 2014 Feb; 7(2):483-91. PubMed ID: 24464945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.
    Wang J; Huang R; Feng Z; Liu H; Su D
    ChemSusChem; 2016 Jul; 9(14):1820-6. PubMed ID: 27282126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative dehydrogenation of n-butane over magnesium vanadate nano-catalysts supported on magnesia-zirconia: effect of vanadium content.
    Lee JK; Hong UG; Yoo Y; Cho YJ; Lee J; Chang H; Song IK
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8110-5. PubMed ID: 24266201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.
    Deng W; Chen J; Kang J; Zhang Q; Wang Y
    Chem Commun (Camb); 2016 May; 52(41):6805-8. PubMed ID: 27125360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions.
    Schwartz V; Fu W; Tsai YT; Meyer HM; Rondinone AJ; Chen J; Wu Z; Overbury SH; Liang C
    ChemSusChem; 2013 May; 6(5):840-6. PubMed ID: 23471876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route.
    Fang C; Zhang D; Cai S; Zhang L; Huang L; Li H; Maitarad P; Shi L; Gao R; Zhang J
    Nanoscale; 2013 Oct; 5(19):9199-207. PubMed ID: 23928911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-directed growth of Pd nanocrystals on carbon nanotubes towards efficient oxygen reduction reactions.
    Zhang LY; Guo CX; Cui Z; Guo J; Dong Z; Li CM
    Chemistry; 2012 Dec; 18(49):15693-8. PubMed ID: 23060239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts.
    Shi L; Wang Y; Yan B; Song W; Shao D; Lu AH
    Chem Commun (Camb); 2018 Sep; 54(78):10936-10946. PubMed ID: 30124691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ supported MnO(x)-CeO(x) on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3.
    Zhang D; Zhang L; Shi L; Fang C; Li H; Gao R; Huang L; Zhang J
    Nanoscale; 2013 Feb; 5(3):1127-36. PubMed ID: 23282798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ growth of carbon nanotubes on Ni/MgO: a facile preparation of efficient catalysts for the production of synthetic natural gas from syngas.
    Fan MT; Lin JD; Zhang HB; Liao DW
    Chem Commun (Camb); 2015 Nov; 51(86):15720-3. PubMed ID: 26365211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonochemical oxidation of multiwalled carbon nanotubes.
    Xing Y; Li L; Chusuei CC; Hull RV
    Langmuir; 2005 Apr; 21(9):4185-90. PubMed ID: 15835993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of oxidized multi-walled carbon nanotubes: Interplay of nanomaterial surface O-functional groups and solution chemistry factors.
    Xia T; Guo X; Lin Y; Xin B; Li S; Yan N; Zhu L
    Environ Pollut; 2019 Aug; 251():921-929. PubMed ID: 31234258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
    Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE
    Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes.
    Huang R; Liu HY; Zhang BS; Sun XY; Liang CH; Su DS; Zong BN; Rong JF
    ChemSusChem; 2014 Dec; 7(12):3476-82. PubMed ID: 25213438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.