BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28000524)

  • 1. Modulation of cancer-specific immune responses by amino acid degrading enzymes.
    Timosenko E; Hadjinicolaou AV; Cerundolo V
    Immunotherapy; 2017 Jan; 9(1):83-97. PubMed ID: 28000524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO.
    Kim M; Tomek P
    Front Immunol; 2021; 12():636081. PubMed ID: 33708223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editorial: Targeting Indoleamine 2,3-dioxygenases and Tryptophan Dioxygenase for Cancer Immunotherapy.
    Brochez L; Kruse V; Schadendorf D; Muller AJ; Prendergast GC
    Front Immunol; 2021; 12():789473. PubMed ID: 34938297
    [No Abstract]   [Full Text] [Related]  

  • 4. Targeting Indoleamine Dioxygenase and Tryptophan Dioxygenase in Cancer Immunotherapy: Clinical Progress and Challenges.
    Peng X; Zhao Z; Liu L; Bai L; Tong R; Yang H; Zhong L
    Drug Des Devel Ther; 2022; 16():2639-2657. PubMed ID: 35965963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly efficient modality to block the degradation of tryptophan for cancer immunotherapy: locked nucleic acid-modified antisense oligonucleotides to inhibit human indoleamine 2,3-dioxygenase 1/tryptophan 2,3-dioxygenase expression.
    Klar R; Michel S; Schell M; Hinterwimmer L; Zippelius A; Jaschinski F
    Cancer Immunol Immunother; 2020 Jan; 69(1):57-67. PubMed ID: 31802183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor.
    Song X; Si Q; Qi R; Liu W; Li M; Guo M; Wei L; Yao Z
    Front Immunol; 2021; 12():800630. PubMed ID: 35003126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evading immunity: new enzyme implicated in cancer.
    Garber K
    J Natl Cancer Inst; 2012 Mar; 104(5):349-52. PubMed ID: 22349199
    [No Abstract]   [Full Text] [Related]  

  • 8. Tumoral Immune Resistance Mediated by Enzymes That Degrade Tryptophan.
    van Baren N; Van den Eynde BJ
    Cancer Immunol Res; 2015 Sep; 3(9):978-85. PubMed ID: 26269528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune-suppressive properties of the tumor microenvironment.
    Becker JC; Andersen MH; Schrama D; Thor Straten P
    Cancer Immunol Immunother; 2013 Jul; 62(7):1137-48. PubMed ID: 23666510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tryptophan metabolism in cancers and therapeutic implications.
    Liu XH; Zhai XY
    Biochimie; 2021 Mar; 182():131-139. PubMed ID: 33460767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO.
    Mondanelli G; Ugel S; Grohmann U; Bronte V
    Curr Opin Pharmacol; 2017 Aug; 35():30-39. PubMed ID: 28554057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives.
    Peyraud F; Guegan JP; Bodet D; Cousin S; Bessede A; Italiano A
    Front Immunol; 2022; 13():807271. PubMed ID: 35173722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A new mechanism of tumor resistance to the immune system, based on tryptophan breakdown by indoleamine 2,3-dioxygenase].
    Van den Eynde B
    Bull Mem Acad R Med Belg; 2003; 158(7-9):356-63; discussion 364-5. PubMed ID: 15132006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroendocrine tumours and their microenvironment.
    de Hosson LD; Takkenkamp TJ; Kats-Ugurlu G; Bouma G; Bulthuis M; de Vries EGE; van Faassen M; Kema IP; Walenkamp AME
    Cancer Immunol Immunother; 2020 Aug; 69(8):1449-1459. PubMed ID: 32270230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan Catabolism and Cancer Immunotherapy Targeting IDO Mediated Immune Suppression.
    Amobi A; Qian F; Lugade AA; Odunsi K
    Adv Exp Med Biol; 2017; 1036():129-144. PubMed ID: 29275469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The therapeutic potential of targeting tryptophan catabolism in cancer.
    Opitz CA; Somarribas Patterson LF; Mohapatra SR; Dewi DL; Sadik A; Platten M; Trump S
    Br J Cancer; 2020 Jan; 122(1):30-44. PubMed ID: 31819194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment.
    Gostner JM; Becker K; Überall F; Fuchs D
    Expert Opin Ther Targets; 2015 May; 19(5):605-15. PubMed ID: 25684107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor immune escape mediated by indoleamine 2,3-dioxygenase.
    Zamanakou M; Germenis AE; Karanikas V
    Immunol Lett; 2007 Aug; 111(2):69-75. PubMed ID: 17644189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indoleamine 2,3-dioxygenase (IDO): Biology and Target in Cancer Immunotherapies.
    Selvan SR; Dowling JP; Kelly WK; Lin J
    Curr Cancer Drug Targets; 2016; 16(9):755-764. PubMed ID: 26517538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino-acid sensing and degrading pathways in immune regulation.
    Grohmann U; Mondanelli G; Belladonna ML; Orabona C; Pallotta MT; Iacono A; Puccetti P; Volpi C
    Cytokine Growth Factor Rev; 2017 Jun; 35():37-45. PubMed ID: 28545736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.