These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28000809)

  • 1. Long range electrostatic forces in ionic liquids.
    Gebbie MA; Smith AM; Dobbs HA; Lee AA; Warr GG; Banquy X; Valtiner M; Rutland MW; Israelachvili JN; Perkin S; Atkin R
    Chem Commun (Camb); 2017 Jan; 53(7):1214-1224. PubMed ID: 28000809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range electrostatic screening in ionic liquids.
    Gebbie MA; Dobbs HA; Valtiner M; Israelachvili JN
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7432-7. PubMed ID: 26040001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
    Smith AM; Lee AA; Perkin S
    J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.
    Fumino K; Reimann S; Ludwig R
    Phys Chem Chem Phys; 2014 Oct; 16(40):21903-29. PubMed ID: 24898478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges.
    Kjellander R
    J Chem Phys; 2018 May; 148(19):193701. PubMed ID: 30307204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions.
    Kjellander R
    J Chem Phys; 2016 Sep; 145(12):124503. PubMed ID: 27782655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decay behavior of screened electrostatic surface forces in ionic liquids: the vital role of non-local electrostatics.
    Kjellander R
    Phys Chem Chem Phys; 2016 Jul; 18(28):18985-9000. PubMed ID: 27356099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocrystals in Molten Salts and Ionic Liquids: Experimental Observation of Ionic Correlations Extending beyond the Debye Length.
    Kamysbayev V; Srivastava V; Ludwig NB; Borkiewicz OJ; Zhang H; Ilavsky J; Lee B; Chapman KW; Vaikuntanathan S; Talapin DV
    ACS Nano; 2019 May; 13(5):5760-5770. PubMed ID: 30964280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.
    Gavish N; Elad D; Yochelis A
    J Phys Chem Lett; 2018 Jan; 9(1):36-42. PubMed ID: 29220577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent.
    Coles SW; Smith AM; Fedorov MV; Hausen F; Perkin S
    Faraday Discuss; 2018 Jan; 206():427-442. PubMed ID: 28933495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes.
    Vatamanu J; Vatamanu M; Borodin O; Bedrov D
    J Phys Condens Matter; 2016 Nov; 28(46):464002. PubMed ID: 27623976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A screening of results on the decay length in concentrated electrolytes.
    Jäger H; Schlaich A; Yang J; Lian C; Kondrat S; Holm C
    Faraday Discuss; 2023 Oct; 246(0):520-539. PubMed ID: 37602784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.
    Ivaništšev V; Méndez-Morales T; Lynden-Bell RM; Cabeza O; Gallego LJ; Varela LM; Fedorov MV
    Phys Chem Chem Phys; 2016 Jan; 18(2):1302-10. PubMed ID: 26661060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids.
    Yochelis A
    Phys Chem Chem Phys; 2014 Feb; 16(7):2836-41. PubMed ID: 24419152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave mechanics in an ionic liquid mixture.
    Groves TS; Perkin S
    Faraday Discuss; 2024 Oct; 253(0):193-211. PubMed ID: 39045840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic structure in liquids confined by dielectric interfaces.
    Jing Y; Jadhao V; Zwanikken JW; Olvera de la Cruz M
    J Chem Phys; 2015 Nov; 143(19):194508. PubMed ID: 26590543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role.
    Łuczak J; Paszkiewicz M; Krukowska A; Malankowska A; Zaleska-Medynska A
    Adv Colloid Interface Sci; 2016 Apr; 230():13-28. PubMed ID: 26329594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are Room-Temperature Ionic Liquids Dilute Electrolytes?
    Lee AA; Vella D; Perkin S; Goriely A
    J Phys Chem Lett; 2015 Jan; 6(1):159-63. PubMed ID: 26263105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.
    Dagade DH; Madkar KR; Shinde SP; Barge SS
    J Phys Chem B; 2013 Jan; 117(4):1031-43. PubMed ID: 23293839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.