These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28000833)

  • 1. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Dielectric Antenna Wavelength Router with Bidirectional Scattering of Visible Light.
    Li J; Verellen N; Vercruysse D; Bearda T; Lagae L; Van Dorpe P
    Nano Lett; 2016 Jul; 16(7):4396-403. PubMed ID: 27244478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D nanoporous antennas as a platform for high sensitivity IR plasmonic sensing.
    Calandrini E; Giovannini G; Garoli D
    Opt Express; 2019 Sep; 27(18):25912-25919. PubMed ID: 31510453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D vertical nanostructures for enhanced infrared plasmonics.
    Malerba M; Alabastri A; Miele E; Zilio P; Patrini M; Bajoni D; Messina GC; Dipalo M; Toma A; Proietti Zaccaria R; De Angelis F
    Sci Rep; 2015 Nov; 5():16436. PubMed ID: 26552340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epsilon-near-zero substrate-enabled strong coupling between molecular vibrations and mid-infrared plasmons.
    Ma P; Liu K; Huang G; Ding Y; Du W; Wang T
    Opt Lett; 2022 Sep; 47(17):4524-4527. PubMed ID: 36048695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
    Chong X; Zhang Y; Li E; Kim KJ; Ohodnicki PR; Chang CH; Wang AX
    ACS Sens; 2018 Jan; 3(1):230-238. PubMed ID: 29262684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics.
    Cohn B; Prasad AK; Chuntonov L
    J Chem Phys; 2018 Apr; 148(13):131101. PubMed ID: 29626913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.
    Brar VW; Jang MS; Sherrott M; Lopez JJ; Atwater HA
    Nano Lett; 2013 Jun; 13(6):2541-7. PubMed ID: 23621616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics.
    Garoli D; Schirato A; Giovannini G; Cattarin S; Ponzellini P; Calandrini E; Proietti Zaccaria R; D'Amico F; Pachetti M; Yang W; Jin HJ; Krahne R; Alabastri A
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoantenna structures for the detection of phonons in nanocrystals.
    Milekhin AG; Kuznetsov SA; Milekhin IA; Sveshnikova LL; Duda TA; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Beilstein J Nanotechnol; 2018; 9():2646-2656. PubMed ID: 30416915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Strong Coupling by Second-Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas.
    Krause B; Mishra D; Chen J; Argyropoulos C; Hoang T
    Adv Opt Mater; 2022 Aug; 10(16):. PubMed ID: 36275124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic antennas hybridized with dielectric waveguides.
    Bernal Arango F; Kwadrin A; Koenderink AF
    ACS Nano; 2012 Nov; 6(11):10156-67. PubMed ID: 23066710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.