These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28000979)

  • 21. Unnatural Amino Acid Synthesis Enabled by the Regioselective Cobalt(III)-Catalyzed Intermolecular Carboamination of Alkenes.
    Lerchen A; Knecht T; Daniliuc CG; Glorius F
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15166-15170. PubMed ID: 27785863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerobic oxidative C-H olefination of cyclic N-sulfonyl ketimines catalyzed by a rhodium catalyst.
    Wang NJ; Mei ST; Shuai L; Yuan Y; Wei Y
    Org Lett; 2014 Jun; 16(11):3040-3. PubMed ID: 24814370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cp*Co(III) Catalyzed Site-Selective C-H Activation of Unsymmetrical O-Acyl Oximes: Synthesis of Multisubstituted Isoquinolines from Terminal and Internal Alkynes.
    Sun B; Yoshino T; Kanai M; Matsunaga S
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12968-72. PubMed ID: 26412390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Revisit to the β-Carbon Elimination Step in Rh(III)-Catalyzed C-H Activation/Cycloaddition Reactions of N-Phenoxyacetamide and Cyclopropenes.
    Chen J; Guo W; Xia Y
    J Org Chem; 2016 Mar; 81(6):2635-8. PubMed ID: 26889719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodium(iii) vs. cobalt(iii): a mechanistically distinct three-component C-H bond addition cascade using a Cp*Rh
    Li R; Ju CW; Zhao D
    Chem Commun (Camb); 2019 Jan; 55(5):695-698. PubMed ID: 30565600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rh(III)-catalyzed C-H activation and double directing group strategy for the regioselective synthesis of naphthyridinones.
    Huckins JR; Bercot EA; Thiel OR; Hwang TL; Bio MM
    J Am Chem Soc; 2013 Oct; 135(39):14492-5. PubMed ID: 24020333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing Catalyst Efficiency in C-H Activation Catalysis.
    Gensch T; James MJ; Dalton T; Glorius F
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2296-2306. PubMed ID: 29205745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational study on mechanism of Rh(III)-catalyzed oxidative Heck coupling of phenol carbamates with alkenes.
    Zhang Q; Yu HZ; Li YT; Liu L; Huang Y; Fu Y
    Dalton Trans; 2013 Mar; 42(12):4175-84. PubMed ID: 23385440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative Heck coupling of biaryl compounds with alkenes.
    Zheng J; You SL
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13244-7. PubMed ID: 25346171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scope and mechanism of the intermolecular addition of aromatic aldehydes to olefins catalyzed by Rh(I) olefin complexes.
    Roy AH; Lenges CP; Brookhart M
    J Am Chem Soc; 2007 Feb; 129(7):2082-93. PubMed ID: 17263531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wagner-Meerwein rearrangement of a [3.3.3]- to a [4.3.3]propellane: deuterium tracer and conformational analysis.
    Reyes-Trejo B; Morales-Ríos MS; Joseph-Nathan P
    Magn Reson Chem; 2007 Apr; 45(4):346-50. PubMed ID: 17351977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rh
    Rej S; Chatani N
    Chemistry; 2020 Sep; 26(49):11093-11098. PubMed ID: 32239540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radical promoted Wagner-Meerwein-type rearrangement of epoxides in camphoric systems using a Ti(III) radical source.
    Jana S; Guin C; Roy SC
    J Org Chem; 2005 Sep; 70(20):8252-4. PubMed ID: 16277363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Mechanistic Insight into Cooperative Lewis Acid/Cp*Co
    Wang Q; Huang F; Jiang L; Zhang C; Sun C; Liu J; Chen D
    Inorg Chem; 2018 Mar; 57(5):2804-2814. PubMed ID: 29446928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhodium(III) and hexabromobenzene-a catalyst system for the cross-dehydrogenative coupling of simple arenes and heterocycles with arenes bearing directing groups.
    Wencel-Delord J; Nimphius C; Wang H; Glorius F
    Angew Chem Int Ed Engl; 2012 Dec; 51(52):13001-5. PubMed ID: 23086666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective Cyclization of Arylnitrones to Indolines under External Oxidant-Free Conditions: Dual Role of Rh(III) Catalyst in the C-H Activation and Oxygen Atom Transfer.
    Dateer RB; Chang S
    J Am Chem Soc; 2015 Apr; 137(15):4908-11. PubMed ID: 25846477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic Study of Cp*Co
    Qu S; Cramer CJ
    J Org Chem; 2017 Jan; 82(2):1195-1204. PubMed ID: 28005358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wagner-Meerwein-Type Rearrangements of Germapolysilanes - A Stable Ion Study.
    Albers L; Meshgi MA; Baumgartner J; Marschner C; Müller T
    Organometallics; 2015 Aug; 34(15):3756-3763. PubMed ID: 26294805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rh(III)-Catalyzed Carbocyclization of 3-(Indolin-1-yl)-3-oxopropanenitriles with Alkynes and Alkenes through C-H Activation.
    Zhou T; Wang Y; Li B; Wang B
    Org Lett; 2016 Oct; 18(19):5066-5069. PubMed ID: 27648487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.