BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28000994)

  • 1. Lithium Dihydropyridine Dehydrogenation Catalysis: A Group 1 Approach to the Cyclization of Diamine Boranes.
    McLellan R; Kennedy AR; Orr SA; Robertson SD; Mulvey RE
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1036-1041. PubMed ID: 28000994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Effective Ruthenium System for the Catalyzed Dehydrogenative Cyclization of Amine-Boranes to Cyclic Boranes under Mild Conditions.
    Wallis CJ; Alcaraz G; Petit AS; Poblador-Bahamonde AI; Clot E; Bijani C; Vendier L; Sabo-Etienne S
    Chemistry; 2015 Sep; 21(37):13080-90. PubMed ID: 26220052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenation of diamine-monoboranes to cyclic diaminoboranes: efficient ruthenium-catalyzed dehydrogenative cyclization.
    Wallis CJ; Dyer H; Vendier L; Alcaraz G; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2012 Apr; 51(15):3646-8. PubMed ID: 22337645
    [No Abstract]   [Full Text] [Related]  

  • 4. Dehydrogenation of ammonia-borane by Shvo's catalyst.
    Conley BL; Williams TJ
    Chem Commun (Camb); 2010 Jul; 46(26):4815-7. PubMed ID: 20508879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-catalyzed dehydrogenation of ammonia boranes.
    Blaquiere N; Diallo-Garcia S; Gorelsky SI; Black DA; Fagnou K
    J Am Chem Soc; 2008 Oct; 130(43):14034-5. PubMed ID: 18831582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium-catalyzed transfer-hydrogenative cyclization of 1,6-diynes with hantzsch 1,4-dihydropyridine as a H2 surrogate.
    Yamamoto Y; Mori S; Shibuya M
    Chemistry; 2013 Sep; 19(36):12034-41. PubMed ID: 23893911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane.
    Duman S; Metin O; Ozkar S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4954-61. PubMed ID: 23901516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt(diamine)-catalyzed cross-coupling reaction of alkyl halides with arylmagnesium reagents: stereoselective constructions of arylated asymmetric carbons and application to total synthesis of AH13205.
    Ohmiya H; Yorimitsu H; Oshima K
    J Am Chem Soc; 2006 Feb; 128(6):1886-9. PubMed ID: 16464089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric fluorocyclizations of alkenes.
    Wolstenhulme JR; Gouverneur V
    Acc Chem Res; 2014 Dec; 47(12):3560-70. PubMed ID: 25379791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium-catalyzed cyclization of alkyne-epoxide functionalities through alternation of the substituent and structural skeleton of epoxides.
    Ming-Yuan L; Madhushaw RJ; Liu RS
    J Org Chem; 2004 Oct; 69(22):7700-4. PubMed ID: 15497999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroboration of an alkene by amine-boranes catalysed by a [Rh(PR3)2]+ fragment. Mechanistic insight and tandem hydroboration/dehydrogenation.
    Sewell LJ; Chaplin AB; Weller AS
    Dalton Trans; 2011 Aug; 40(29):7499-501. PubMed ID: 21713289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage.
    Bandaru S; English NJ; Phillips AD; MacElroy JM
    J Comput Chem; 2014 May; 35(12):891-903. PubMed ID: 24497325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroboration of Arynes Formed by Hexadehydro-Diels-Alder Cyclizations with N-Heterocyclic Carbene Boranes.
    Watanabe T; Curran DP; Taniguchi T
    Org Lett; 2015 Jul; 17(14):3450-3. PubMed ID: 26114804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Homogeneous Cationic Gold Catalysis through a Mechanism-Based Approach.
    Lu Z; Hammond GB; Xu B
    Acc Chem Res; 2019 May; 52(5):1275-1288. PubMed ID: 31002231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational mechanistic studies of ruthenium catalysed methanol dehydrogenation.
    de Zwart FJ; Sinha V; Trincado M; Grützmacher H; de Bruin B
    Dalton Trans; 2022 Feb; 51(8):3019-3026. PubMed ID: 35079760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst.
    He J; Yamaguchi K; Mizuno N
    J Org Chem; 2011 Jun; 76(11):4606-10. PubMed ID: 21534533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen release from dialkylamine-boranes promoted by Mg and Ca complexes: a DFT analysis of the reaction mechanism.
    Butera V; Russo N; Sicilia E
    Chemistry; 2014 May; 20(20):5967-76. PubMed ID: 24700384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts.
    Robertson AP; Suter R; Chabanne L; Whittell GR; Manners I
    Inorg Chem; 2011 Dec; 50(24):12680-91. PubMed ID: 22103654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.