BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28001059)

  • 1. Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis.
    Babu G; Masurkar N; Al Salem H; Arava LM
    J Am Chem Soc; 2017 Jan; 139(1):171-178. PubMed ID: 28001059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries.
    Al Salem H; Babu G; Rao CV; Arava LM
    J Am Chem Soc; 2015 Sep; 137(36):11542-5. PubMed ID: 26331670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically Engineered Transition Metal Dichalcogenides for Liquid Polysulfide Adsorption and Their Effective Conversion in Li-S Batteries.
    Mahankali K; Thangavel NK; Gopchenko D; Arava LMR
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27112-27121. PubMed ID: 32432451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li
    Fan S; Huang S; Pam ME; Chen S; Wu Q; Hu J; Wang Y; Ang LK; Yan C; Shi Y; Yang HY
    Small; 2019 Dec; 15(51):e1906132. PubMed ID: 31756047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the Electrocatalytic Activity of 1T'-MoSe
    Mahankali K; Gottumukkala SV; Masurkar N; Thangavel NK; Jayan R; Sawas A; Nagarajan S; Islam MM; Arava LMR
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24486-24496. PubMed ID: 35583340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector.
    Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20369-76. PubMed ID: 26305234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.
    Zhong Y; Yin L; He P; Liu W; Wu Z; Wang H
    J Am Chem Soc; 2018 Jan; 140(4):1455-1459. PubMed ID: 29309139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.
    Kozen AC; Lin CF; Pearse AJ; Schroeder MA; Han X; Hu L; Lee SB; Rubloff GW; Noked M
    ACS Nano; 2015 Jun; 9(6):5884-92. PubMed ID: 25970127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer.
    Wei H; Ma J; Li B; Zuo Y; Xia D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20276-81. PubMed ID: 25275455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal Quantification of Lithium both in Electrode and in Electrolyte with Atomic Precision via Operando Neutron Absorption.
    Harks PRML; Verhallen TW; George C; van den Biesen JK; Liu Q; Wagemaker M; Mulder FM
    J Am Chem Soc; 2019 Sep; 141(36):14280-14287. PubMed ID: 31448600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries.
    Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur Batteries.
    Jia L; Wu T; Lu J; Ma L; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30248-30255. PubMed ID: 27753479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries.
    Zhuang TZ; Huang JQ; Peng HJ; He LY; Cheng XB; Chen CM; Zhang Q
    Small; 2016 Jan; 12(3):381-9. PubMed ID: 26641415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration.
    Babu G; Ababtain K; Ng KY; Arava LM
    Sci Rep; 2015 Mar; 5():8763. PubMed ID: 25740731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the positive roles of liquid polysulfides in alkali metal-sulfur electrochemistry: from electrolyte additives to active catholyte.
    Chang C; Pu X
    Nanoscale; 2019 Nov; 11(45):21595-21621. PubMed ID: 31697288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.