These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28001158)

  • 1. Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets.
    Dang VB; Kim SJ
    Lab Chip; 2017 Jan; 17(2):286-292. PubMed ID: 28001158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.
    Kim SJ; Yokokawa R; Lesher-Perez SC; Takayama S
    Nat Commun; 2015 Jun; 6():7301. PubMed ID: 26073884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous microfluidic actuators for periodic sequential flow generation.
    Li Z; Kim SJ
    Sci Adv; 2019 Apr; 5(4):eaat3080. PubMed ID: 31016234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity-driven preprogrammed microfluidic recirculation system for parallel biosensing of cell behaviors.
    Boonyaphon K; Li Z; Kim SJ
    Anal Chim Acta; 2022 Nov; 1233():340456. PubMed ID: 36283774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic oscillators with widely tunable periods.
    Kim SJ; Yokokawa R; Takayama S
    Lab Chip; 2013 Apr; 13(8):1644-8. PubMed ID: 23429765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-in-Water Droplets by Passive Microfluidic Flow Focusing.
    Moon BU; Abbasi N; Jones SG; Hwang DK; Tsai SS
    Anal Chem; 2016 Apr; 88(7):3982-9. PubMed ID: 26959358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices.
    Mosadegh B; Kuo CH; Tung YC; Torisawa YS; Bersano-Begey T; Tavana H; Takayama S
    Nat Phys; 2010 Jun; 6(6):433-437. PubMed ID: 20526435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing pressure-driven pulsatile flows in microfluidic devices.
    Recktenwald SM; Wagner C; John T
    Lab Chip; 2021 Jun; 21(13):2605-2613. PubMed ID: 34008605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic bypass manometry: highly parallelized measurement of flow resistance of complex channel geometries and trapped droplets.
    Suteria NS; Nekouei M; Vanapalli SA
    Lab Chip; 2018 Jan; 18(2):343-355. PubMed ID: 29264612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.
    Iwai K; Shih KC; Lin X; Brubaker TA; Sochol RD; Lin L
    Lab Chip; 2014 Oct; 14(19):3790-9. PubMed ID: 25102160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Laser-Engraving Technique for Portable Micropneumatic Oscillators.
    Balaji V; Castro K; Folch A
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous two-phase microdroplets with reversible phase transitions.
    Boreyko JB; Mruetusatorn P; Retterer ST; Collier CP
    Lab Chip; 2013 Apr; 13(7):1295-301. PubMed ID: 23381219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments.
    Thurgood P; Baratchi S; Szydzik C; Mitchell A; Khoshmanesh K
    Lab Chip; 2017 Jul; 17(14):2517-2527. PubMed ID: 28653722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip.
    Lee Y; Kim DM; Li Z; Kim DE; Kim SJ
    Lab Chip; 2018 Mar; 18(6):915-922. PubMed ID: 29445802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
    Baigl D
    Lab Chip; 2012 Oct; 12(19):3637-53. PubMed ID: 22864577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices.
    Xu JH; Dong PF; Zhao H; Tostado CP; Luo GS
    Langmuir; 2012 Jun; 28(25):9250-8. PubMed ID: 22650368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change.
    Huh D; Tkaczyk AH; Bahng JH; Chang Y; Wei HH; Grotberg JB; Kim CJ; Kurabayashi K; Takayama S
    J Am Chem Soc; 2003 Dec; 125(48):14678-9. PubMed ID: 14640622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.