These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 28001308)
1. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Martinov MP; Thomson RM Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308 [TBL] [Abstract][Full Text] [Related]
2. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy II. Cellular dose enhancement within macroscopic tumor models. Martinov MP; Fletcher EM; Thomson RM Med Phys; 2023 Sep; 50(9):5842-5852. PubMed ID: 37246723 [TBL] [Abstract][Full Text] [Related]
3. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy I: Cellular dose enhancement in microscopic models. Martinov MP; Fletcher EM; Thomson RM Med Phys; 2023 Sep; 50(9):5853-5864. PubMed ID: 37211878 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons. Lin Y; Paganetti H; McMahon SJ; Schuemann J Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263 [TBL] [Abstract][Full Text] [Related]
5. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737 [TBL] [Abstract][Full Text] [Related]
6. Dosimetric consequences of gold nanoparticle clustering during photon irradiation. Kirkby C; Koger B; Suchowerska N; McKenzie DR Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Amato E; Italiano A; Leotta S; Pergolizzi S; Torrisi L J Xray Sci Technol; 2013; 21(2):237-47. PubMed ID: 23694913 [TBL] [Abstract][Full Text] [Related]
8. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation. Liu R; Zhao T; Zhao X; Reynoso FJ Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039 [TBL] [Abstract][Full Text] [Related]
9. A detailed Monte Carlo evaluation of Gray T; Bassiri N; David S; Patel DY; Stathakis S; Kirby N; Mayer KM Phys Med Biol; 2020 Jul; 65(13):135007. PubMed ID: 32434159 [TBL] [Abstract][Full Text] [Related]
10. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy. Reynoso FJ; Manohar N; Krishnan S; Cho SH Med Phys; 2014 Oct; 41(10):101709. PubMed ID: 25281948 [TBL] [Abstract][Full Text] [Related]
11. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Jones BL; Krishnan S; Cho SH Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089 [TBL] [Abstract][Full Text] [Related]
12. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement. Byrne HL; Gholami Y; Kuncic Z Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation. Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476 [TBL] [Abstract][Full Text] [Related]
14. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Lin Y; McMahon SJ; Scarpelli M; Paganetti H; Schuemann J Phys Med Biol; 2014 Dec; 59(24):7675-89. PubMed ID: 25415297 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Chow JC; Leung MK; Jaffray DA Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475 [TBL] [Abstract][Full Text] [Related]
16. SU-E-T-10: Monte Carlo Study of the Dose Enhancement Factor (DEF) for Gold Nano-Particle (GNP) on the Cellular Level. Zhang M; Qin S; Haffty B; Yue N Med Phys; 2012 Jun; 39(6Part9):3704. PubMed ID: 28519059 [TBL] [Abstract][Full Text] [Related]
17. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Delorme R; Taupin F; Flaender M; Ravanat JL; Champion C; Agelou M; Elleaume H Med Phys; 2017 Nov; 44(11):5949-5960. PubMed ID: 28886212 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo Evaluation of Dose Enhancement Due to CuATSM or GNP Uptake in Hypoxic Environments with External Beam Radiation. Martinez S; Brandl A; Leary D Int J Nanomedicine; 2020; 15():3719-3727. PubMed ID: 32547024 [TBL] [Abstract][Full Text] [Related]
19. Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization. Lechtman E; Pignol JP Sci Rep; 2017 Oct; 7(1):13268. PubMed ID: 29038517 [TBL] [Abstract][Full Text] [Related]
20. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Lechtman E; Chattopadhyay N; Cai Z; Mashouf S; Reilly R; Pignol JP Phys Med Biol; 2011 Aug; 56(15):4631-47. PubMed ID: 21734337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]