These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28001420)

  • 1. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Evans JE; Davies PR; Ward MB; Wilks SP
    Nano Lett; 2017 Feb; 17(2):687-694. PubMed ID: 28001420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires.
    Lord AM; Maffeis TG; Kryvchenkova O; Cobley RJ; Kalna K; Kepaptsoglou DM; Ramasse QM; Walton AS; Ward MB; Köble J; Wilks SP
    Nano Lett; 2015 Jul; 15(7):4248-54. PubMed ID: 26042356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of nanocontact on nanowire based nanoelectronics.
    Lin YF; Jian WB
    Nano Lett; 2008 Oct; 8(10):3146-50. PubMed ID: 18729520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Ohmic nanocontacts via surface modification for nanowire-based electronic and optoelectronic devices: ZnO nanowires as an example.
    He JH; Ke JJ; Chang PH; Tsai KT; Yang PC; Chan IM
    Nanoscale; 2012 Jun; 4(11):3399-404. PubMed ID: 22588602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-Inactive CO
    Nakamura K; Takahashi T; Hosomi T; Seki T; Kanai M; Zhang G; Nagashima K; Shibata N; Yanagida T
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40260-40266. PubMed ID: 31581773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
    Zamani RR; Hage FS; Lehmann S; Ramasse QM; Dick KA
    Nano Lett; 2018 Mar; 18(3):1557-1563. PubMed ID: 29116807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features of transport in ultrathin gold nanowire structures.
    Pud S; Kisner A; Heggen M; Belaineh D; Temirov R; Simon U; Offenhäusser A; Mourzina Y; Vitusevich S
    Small; 2013 Mar; 9(6):846-52. PubMed ID: 23125023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect Manipulation To Control ZnO Micro-/Nanowire-Metal Contacts.
    Cox JW; Foster GM; Jarjour A; von Wenckstern H; Grundmann M; Brillson LJ
    Nano Lett; 2018 Nov; 18(11):6974-6980. PubMed ID: 30384614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between the performance and microstructure of Ti/Al/Ti/Au Ohmic contacts to p-type silicon nanowires.
    Motayed A; Bonevich JE; Krylyuk S; Davydov AV; Aluri G; Rao MV
    Nanotechnology; 2011 Feb; 22(7):075206. PubMed ID: 21233538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Edge Contact: Atomically Resolved Semiconductor-Metal Lateral Boundary in MoS
    Kwon H; Lee K; Heo J; Oh Y; Lee H; Appalakondaiah S; Ko W; Kim HW; Jung JW; Suh H; Min H; Jeon I; Hwang E; Hwang S
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire.
    Bercu B; Geng W; Simonetti O; Kostcheev S; Sartel C; Sallet V; Lérondel G; Molinari M; Giraudet L; Couteau C
    Nanotechnology; 2013 Oct; 24(41):415202. PubMed ID: 24060613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi One-Dimensional Metal-Semiconductor Heterostructures.
    Benter S; Dubrovskii VG; Bartmann M; Campo A; Zardo I; Sistani M; Stöger-Pollach M; Lancaster S; Detz H; Lugstein A
    Nano Lett; 2019 Jun; 19(6):3892-3897. PubMed ID: 31117757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution detection of Au catalyst atoms in Si nanowires.
    Allen JE; Hemesath ER; Perea DE; Lensch-Falk JL; Li ZY; Yin F; Gass MH; Wang P; Bleloch AL; Palmer RE; Lauhon LJ
    Nat Nanotechnol; 2008 Mar; 3(3):168-73. PubMed ID: 18654490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities.
    Lin YF; Chang CH; Hung TC; Jian WB; Tsukagoshi K; Wu YH; Chang L; Liu Z; Fang J
    Sci Rep; 2015 Aug; 5():13035. PubMed ID: 26260674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy.
    Lee JA; Lim YR; Jung CS; Choi JH; Im HS; Park K; Park J; Kim GT
    Nanotechnology; 2016 Oct; 27(42):425711. PubMed ID: 27640642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.
    Suyatin DB; Jain V; Nebol'sin VA; Trägårdh J; Messing ME; Wagner JB; Persson O; Timm R; Mikkelsen A; Maximov I; Samuelson L; Pettersson H
    Nat Commun; 2014; 5():3221. PubMed ID: 24488034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocontact resistance and structural disorder induced resistivity variation in metallic metal-oxide nanowires.
    Lin YF; Wu ZY; Lin KC; Chen CC; Jian WB; Chen FR; Kai JJ
    Nanotechnology; 2009 Nov; 20(45):455401. PubMed ID: 19822926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of the formation process for free-standing Au nanowires with a scanning electron microscope.
    Aiba A; Kaneko S; Fujii S; Nishino T; Tsukagoshi K; Kiguchi M
    Nanotechnology; 2017 Mar; 28(10):105707. PubMed ID: 28169228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Ohmic Contacts to p-GaAs Nanowires.
    Rizzo Piton M; Hakkarainen T; Hilska J; Koivusalo E; Lupo D; Galeti HVA; Galvão Gobato Y; Guina M
    Nanoscale Res Lett; 2019 Nov; 14(1):344. PubMed ID: 31728662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.