BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28001423)

  • 1. Modeling of Transient Absorption Spectra in Exciton-Charge-Transfer Systems.
    Kramer T; Rodríguez M; Zelinskyy Y
    J Phys Chem B; 2017 Jan; 121(3):463-470. PubMed ID: 28001423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complex II at Ambient Temperature: A Joint Experimental and Theoretical Study.
    Duan HG; Stevens AL; Nalbach P; Thorwart M; Prokhorenko VI; Miller RJ
    J Phys Chem B; 2015 Sep; 119(36):12017-27. PubMed ID: 26301382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the mixed exciton and charge-transfer states in light-harvesting complex Lhca4: Hierarchical equation approach.
    Novoderezhkin VI; Croce R; van Grondelle R
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):655-665. PubMed ID: 29981722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method.
    Chen L; Zheng R; Jing Y; Shi Q
    J Chem Phys; 2011 May; 134(19):194508. PubMed ID: 21599074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectra and dynamics in the B800 antenna: comparing hierarchical equations, Redfield and Förster theories.
    Novoderezhkin V; van Grondelle R
    J Phys Chem B; 2013 Sep; 117(38):11076-90. PubMed ID: 23531197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria.
    Fujita T; Huh J; Saikin SK; Brookes JC; Aspuru-Guzik A
    Photosynth Res; 2014 Jun; 120(3):273-89. PubMed ID: 24504540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled charge and energy transfer dynamics in light harvesting complexes from a hybrid hierarchical equations of motion approach.
    Fay TP; Limmer DT
    J Chem Phys; 2022 Nov; 157(17):174104. PubMed ID: 36347697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton band structure in bacterial peripheral light-harvesting complexes.
    Trinkunas G; Zerlauskiene O; Urbonienė V; Chmeliov J; Gall A; Robert B; Valkunas L
    J Phys Chem B; 2012 May; 116(17):5192-8. PubMed ID: 22480241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitons in the LH3 complexes from purple bacteria.
    Chmeliov J; Songaila E; Rancova O; Gall A; Robert B; Abramavicius D; Valkunas L
    J Phys Chem B; 2013 Sep; 117(38):11058-68. PubMed ID: 23570515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex.
    Zigmantas D; Read EL; Mancal T; Brixner T; Gardiner AT; Cogdell RJ; Fleming GR
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12672-7. PubMed ID: 16912117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545.
    Aghtar M; Kleinekathöfer U; Curutchet C; Mennucci B
    J Phys Chem B; 2017 Feb; 121(6):1330-1339. PubMed ID: 28112938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
    Yeh SH; Kais S
    J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption.
    Novoderezhkin VI; Andrizhiyevskaya EG; Dekker JP; van Grondelle R
    Biophys J; 2005 Sep; 89(3):1464-81. PubMed ID: 15980183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient estimation of energy transfer efficiency in light-harvesting complexes.
    Shabani A; Mohseni M; Rabitz H; Lloyd S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011915. PubMed ID: 23005460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stochastic reorganizational bath model for electronic energy transfer.
    Fujita T; Huh J; Aspuru-Guzik A
    J Chem Phys; 2014 Jun; 140(24):244103. PubMed ID: 24985614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae.
    Lee MK; Bravaya KB; Coker DF
    J Am Chem Soc; 2017 Jun; 139(23):7803-7814. PubMed ID: 28521106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polaronic effects at finite temperatures in the B850 ring of the LH2 complex.
    Chorošajev V; Rancova O; Abramavicius D
    Phys Chem Chem Phys; 2016 Mar; 18(11):7966-77. PubMed ID: 26955916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of various optical spectra in the presence of slow excitation energy transfer in dimers and trimers with weak interpigment coupling: FMO as an example.
    Herascu N; Kell A; Acharya K; Jankowiak R; Blankenship RE; Zazubovich V
    J Phys Chem B; 2014 Feb; 118(8):2032-40. PubMed ID: 24506338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system.
    Bruggemann B; May V
    J Chem Phys; 2004 Feb; 120(5):2325-36. PubMed ID: 15268371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.