These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 28002400)

  • 1. Evolution of the global phosphorus cycle.
    Reinhard CT; Planavsky NJ; Gill BC; Ozaki K; Robbins LJ; Lyons TW; Fischer WW; Wang C; Cole DB; Konhauser KO
    Nature; 2017 Jan; 541(7637):386-389. PubMed ID: 28002400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of the marine phosphate reservoir.
    Planavsky NJ; Rouxel OJ; Bekker A; Lalonde SV; Konhauser KO; Reinhard CT; Lyons TW
    Nature; 2010 Oct; 467(7319):1088-90. PubMed ID: 20981096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance.
    Ozaki K; Reinhard CT; Tajika E
    Geobiology; 2019 Jan; 17(1):3-11. PubMed ID: 30281196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides.
    Bjerrum CJ; Canfield DE
    Nature; 2002 May; 417(6885):159-62. PubMed ID: 12000956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onset of the aerobic nitrogen cycle during the Great Oxidation Event.
    Zerkle AL; Poulton SW; Newton RJ; Mettam C; Claire MW; Bekker A; Junium CK
    Nature; 2017 Feb; 542(7642):465-467. PubMed ID: 28166535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity.
    Van Cappellen P; Ingall ED
    Science; 1996 Jan; 271():493-6. PubMed ID: 11541251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere.
    Kah LC; Lyons TW; Frank TD
    Nature; 2004 Oct; 431(7010):834-8. PubMed ID: 15483609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread iron-rich conditions in the mid-Proterozoic ocean.
    Planavsky NJ; McGoldrick P; Scott CT; Li C; Reinhard CT; Kelly AE; Chu X; Bekker A; Love GD; Lyons TW
    Nature; 2011 Sep; 477(7365):448-51. PubMed ID: 21900895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin.
    Shen Y; Knoll AH; Walter MR
    Nature; 2003 Jun; 423(6940):632-5. PubMed ID: 12789336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the Ediacaran phosphorus cycle.
    Dodd MS; Shi W; Li C; Zhang Z; Cheng M; Gu H; Hardisty DS; Loyd SJ; Wallace MW; vS Hood A; Lamothe K; Mills BJW; Poulton SW; Lyons TW
    Nature; 2023 Jun; 618(7967):974-980. PubMed ID: 37258677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemical evidence for widespread euxinia in the later Cambrian ocean.
    Gill BC; Lyons TW; Young SA; Kump LR; Knoll AH; Saltzman MR
    Nature; 2011 Jan; 469(7328):80-3. PubMed ID: 21209662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse weathering as a long-term stabilizer of marine pH and planetary climate.
    Isson TT; Planavsky NJ
    Nature; 2018 Aug; 560(7719):471-475. PubMed ID: 30089907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A record of deep-ocean dissolved O
    Stolper DA; Keller CB
    Nature; 2018 Jan; 553(7688):323-327. PubMed ID: 29310121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric oxygenation three billion years ago.
    Crowe SA; Døssing LN; Beukes NJ; Bau M; Kruger SJ; Frei R; Canfield DE
    Nature; 2013 Sep; 501(7468):535-8. PubMed ID: 24067713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Authigenic carbonate and the history of the global carbon cycle.
    Schrag DP; Higgins JA; Macdonald FA; Johnston DT
    Science; 2013 Feb; 339(6119):540-3. PubMed ID: 23372007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.