These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28002408)

  • 1. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node.
    Yamaji N; Takemoto Y; Miyaji T; Mitani-Ueno N; Yoshida KT; Ma JF
    Nature; 2017 Jan; 541(7635):92-95. PubMed ID: 28002408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.).
    Kumar A; Nayak S; Ngangkham U; Sah RP; Lal MK; Tp A; Behera S; Swain P; Behera L; Sharma S
    J Food Biochem; 2021 Jul; 45(7):e13822. PubMed ID: 34121203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains.
    Gu M; Huang H; Hisano H; Ding G; Huang S; Mitani-Ueno N; Yokosho K; Sato K; Yamaji N; Ma JF
    New Phytol; 2022 May; 234(4):1249-1261. PubMed ID: 35218012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains.
    Che J; Yokosho K; Yamaji N; Ma JF
    Plant Physiol; 2019 Sep; 181(1):276-288. PubMed ID: 31331995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains.
    Zhao H; Frank T; Tan Y; Zhou C; Jabnoune M; Arpat AB; Cui H; Huang J; He Z; Poirier Y; Engel KH; Shu Q
    New Phytol; 2016 Aug; 211(3):926-39. PubMed ID: 27110682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Node-Localized Transporters of Phosphorus Essential for Seed Development in Rice.
    Che J; Yamaji N; Miyaji T; Mitani-Ueno N; Kato Y; Shen RF; Ma JF
    Plant Cell Physiol; 2020 Aug; 61(8):1387-1398. PubMed ID: 32484878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transporter at the node responsible for intervascular transfer of silicon in rice.
    Yamaji N; Ma JF
    Plant Cell; 2009 Sep; 21(9):2878-83. PubMed ID: 19734433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice.
    Yamaji N; Sakurai G; Mitani-Ueno N; Ma JF
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11401-6. PubMed ID: 26283388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice.
    Tan L; Zhu Y; Fan T; Peng C; Wang J; Sun L; Chen C
    Biochem Biophys Res Commun; 2019 Apr; 512(1):112-118. PubMed ID: 30871778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains.
    Su D; Zhou L; Zhao Q; Pan G; Cheng F
    J Agric Food Chem; 2018 Feb; 66(7):1601-1611. PubMed ID: 29401375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi-mediated down-regulation of
    Sengupta S; Bhattacharya S; Karmakar A; Ghosh S; Sarkar SN; Gangopadhyay G; Datta K; Datta SK
    J Biosci; 2021; 46():. PubMed ID: 33859067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading.
    Nakagawa Y; Hanaoka H; Kobayashi M; Miyoshi K; Miwa K; Fujiwara T
    Plant Cell; 2007 Aug; 19(8):2624-35. PubMed ID: 17675406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice.
    Huang XY; Liu H; Zhu YF; Pinson SRM; Lin HX; Guerinot ML; Zhao FJ; Salt DE
    New Phytol; 2019 Mar; 221(4):1983-1997. PubMed ID: 30339276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsPTR7 (OsNPF8.1), a Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice Grain.
    Tang Z; Chen Y; Chen F; Ji Y; Zhao FJ
    Plant Cell Physiol; 2017 May; 58(5):904-913. PubMed ID: 28340032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice.
    Yokosho K; Yamaji N; Ma JF
    J Exp Bot; 2016 Oct; 67(18):5485-5494. PubMed ID: 27555544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice-duck co-culture integrated different fertilizers reduce P losses and Pb accumulation in subtropical China.
    Gao H; Dai W; Fang K; Yi X; Chen N; Penttinen P; Sha Z; Cao L
    Chemosphere; 2020 Apr; 245():125571. PubMed ID: 31881387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The knowns and unknowns of phosphorus loading into grains, and implications for phosphorus efficiency in cropping systems.
    Wang F; Rose T; Jeong K; Kretzschmar T; Wissuwa M
    J Exp Bot; 2016 Mar; 67(5):1221-9. PubMed ID: 26662950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice.
    Zhao J; Yu N; Ju M; Fan B; Zhang Y; Zhu E; Zhang M; Zhang K
    J Exp Bot; 2019 Nov; 70(21):6277-6291. PubMed ID: 31504730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice.
    Iwamoto M; Tagiri A
    Plant J; 2016 Feb; 85(4):466-77. PubMed ID: 26729506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice.
    Zheng L; Yamaji N; Yokosho K; Ma JF
    Plant Cell; 2012 Sep; 24(9):3767-82. PubMed ID: 23012434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.