BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28002743)

  • 1. Ordered Membrane Domain-Forming Properties of the Lipids of Borrelia burgdorferi.
    Huang Z; Toledo AM; Benach JL; London E
    Biophys J; 2016 Dec; 111(12):2666-2675. PubMed ID: 28002743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts.
    LaRocca TJ; Pathak P; Chiantia S; Toledo A; Silvius JR; Benach JL; London E
    PLoS Pathog; 2013; 9(5):e1003353. PubMed ID: 23696733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helicobacter pylori lipids can form ordered membrane domains (rafts).
    Huang Z; Zhang XS; Blaser MJ; London E
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183050. PubMed ID: 31449801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acylated cholesteryl galactosides are ubiquitous glycolipid antigens among Borrelia burgdorferi sensu lato.
    Stübs G; Fingerle V; Zähringer U; Schumann RR; Rademann J; Schröder NW
    FEMS Immunol Med Microbiol; 2011 Oct; 63(1):140-3. PubMed ID: 21635569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acylated cholesteryl galactosides are specific antigens of borrelia causing lyme disease and frequently induce antibodies in late stages of disease.
    Stübs G; Fingerle V; Wilske B; Göbel UB; Zähringer U; Schumann RR; Schröder NWJ
    J Biol Chem; 2009 May; 284(20):13326-13334. PubMed ID: 19307181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody.
    LaRocca TJ; Crowley JT; Cusack BJ; Pathak P; Benach J; London E; Garcia-Monco JC; Benach JL
    Cell Host Microbe; 2010 Oct; 8(4):331-42. PubMed ID: 20951967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains.
    Pathak P; London E
    Biophys J; 2015 Oct; 109(8):1630-8. PubMed ID: 26488654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders.
    Megha ; Bakht O; London E
    J Biol Chem; 2006 Aug; 281(31):21903-21913. PubMed ID: 16735517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid rafts can form in the inner and outer membranes of Borrelia burgdorferi and have different properties and associated proteins.
    Toledo A; Huang Z; Coleman JL; London E; Benach JL
    Mol Microbiol; 2018 Apr; 108(1):63-76. PubMed ID: 29377398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A newly discovered cholesteryl galactoside from Borrelia burgdorferi.
    Ben-Menachem G; Kubler-Kielb J; Coxon B; Yergey A; Schneerson R
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7913-8. PubMed ID: 12799465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes.
    Samsonov AV; Mihalyov I; Cohen FS
    Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.
    Huang Z; London E
    Chem Phys Lipids; 2016 Sep; 199():11-16. PubMed ID: 26964703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing association of lipidated signaling proteins in heterogeneous membranes--partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association.
    Weise K; Triola G; Janosch S; Waldmann H; Winter R
    Biochim Biophys Acta; 2010 Jul; 1798(7):1409-17. PubMed ID: 20025847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles.
    Wang Q; London E
    Biophys J; 2018 Aug; 115(4):664-678. PubMed ID: 30082033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.