These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 28002883)

  • 1. Cholesterol metabolism: a potential therapeutic target in Mycobacteria.
    Abuhammad A
    Br J Pharmacol; 2017 Jul; 174(14):2194-2208. PubMed ID: 28002883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis.
    Ouellet H; Johnston JB; de Montellano PR
    Trends Microbiol; 2011 Nov; 19(11):530-9. PubMed ID: 21924910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach.
    Ryan A; Polycarpou E; Lack NA; Evangelopoulos D; Sieg C; Halman A; Bhakta S; Eleftheriadou O; McHugh TD; Keany S; Lowe ED; Ballet R; Abuhammad A; Jacobs WR; Ciulli A; Sim E
    Br J Pharmacol; 2017 Jul; 174(14):2209-2224. PubMed ID: 28380256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis.
    Bonds AC; Sampson NS
    Curr Opin Chem Biol; 2018 Jun; 44():39-46. PubMed ID: 29906645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug metabolism and antibiotic resistance in micro-organisms.
    Sim E; Ryan A
    Br J Pharmacol; 2017 Jul; 174(14):2159-2160. PubMed ID: 28463394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the anti-mycobacterial functional properties of piperidinol derivatives.
    Guy CS; Tichauer E; Kay GL; Phillips DJ; Bailey TL; Harrison J; Furze CM; Millard AD; Gibson MI; Pallen MJ; Fullam E
    Br J Pharmacol; 2017 Jul; 174(14):2183-2193. PubMed ID: 28195652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolism of the Last Two Steroid Rings in
    Crowe AM; Casabon I; Brown KL; Liu J; Lian J; Rogalski JC; Hurst TE; Snieckus V; Foster LJ; Eltis LD
    mBio; 2017 Apr; 8(2):. PubMed ID: 28377529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential effect of ezetimibe against Mycobacterium tuberculosis infection in type II diabetes.
    Tsai IF; Kuo CP; Lin AB; Chien MN; Ho HT; Wei TY; Wu CL; Lu YT
    Respirology; 2017 Apr; 22(3):559-566. PubMed ID: 27879023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approaches to the treatment of bacterial biofilm infections.
    Hughes G; Webber MA
    Br J Pharmacol; 2017 Jul; 174(14):2237-2246. PubMed ID: 28063237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents.
    Campaniço A; Moreira R; Lopes F
    Eur J Med Chem; 2018 Apr; 150():525-545. PubMed ID: 29549838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections.
    Murphy DJ; Brown JR
    BMC Infect Dis; 2007 Jul; 7():84. PubMed ID: 17655757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets.
    Mukhopadhyay S; Nair S; Ghosh S
    FEMS Microbiol Rev; 2012 Mar; 36(2):463-85. PubMed ID: 22092372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review.
    Kiran D; Podell BK; Chambers M; Basaraba RJ
    Semin Immunopathol; 2016 Mar; 38(2):167-83. PubMed ID: 26510950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-pathogen interactions in latent Mycobacterium tuberculosis infection: identification of new targets for tuberculosis intervention.
    Lin MY; Ottenhoff TH
    Endocr Metab Immune Disord Drug Targets; 2008 Mar; 8(1):15-29. PubMed ID: 18393920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection.
    Marimani M; Ahmad A; Duse A
    Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality.
    Naz F; Arish M
    Br J Pharmacol; 2022 Nov; 179(21):4899-4909. PubMed ID: 33150959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review].
    Wang S; Feng Y; Zhang Z
    Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):971-6. PubMed ID: 26665593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.