These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 28002883)

  • 21. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.
    Sellamuthu S; Singh M; Kumar A; Singh SK
    Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small Molecule Mediated Restoration of Mitochondrial Function Augments Anti-Mycobacterial Activity of Human Macrophages Subjected to Cholesterol Induced Asymptomatic Dyslipidemia.
    Asalla S; Mohareer K; Banerjee S
    Front Cell Infect Microbiol; 2017; 7():439. PubMed ID: 29067283
    [No Abstract]   [Full Text] [Related]  

  • 23. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Colworth prize lecture 2016: exploiting new biological targets from a whole-cell phenotypic screening campaign for TB drug discovery.
    Moynihan PJ; Besra GS
    Microbiology (Reading); 2017 Oct; 163(10):1385-1388. PubMed ID: 28893361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme.
    Mittal P; Sinha R; Kumar A; Singh P; Ngasainao MR; Singh A; Singh IK
    Curr Top Med Chem; 2020; 20(5):390-408. PubMed ID: 31924156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relevance of persisters in tuberculosis drug discovery.
    Mandal S; Njikan S; Kumar A; Early JV; Parish T
    Microbiology (Reading); 2019 May; 165(5):492-499. PubMed ID: 30775961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. cor, a novel carbon monoxide resistance gene, is essential for Mycobacterium tuberculosis pathogenesis.
    Zacharia VM; Manzanillo PS; Nair VR; Marciano DK; Kinch LN; Grishin NV; Cox JS; Shiloh MU
    mBio; 2013 Nov; 4(6):e00721-13. PubMed ID: 24255121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycobacterium sulfur metabolism and implications for novel drug targets.
    Zeng L; Shi T; Zhao Q; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis.
    Raman K; Yeturu K; Chandra N
    BMC Syst Biol; 2008 Dec; 2():109. PubMed ID: 19099550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of cholesterol in Mycobacterium tuberculosis infection.
    Miner MD; Chang JC; Pandey AK; Sassetti CM; Sherman DR
    Indian J Exp Biol; 2009 Jun; 47(6):407-11. PubMed ID: 19634704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid Gene Silencing Followed by Antimicrobial Susceptibility Testing for Target Validation in Antibiotic Discovery.
    Daniel C; Willcocks S; Bhakta S
    Methods Mol Biol; 2024; 2833():23-33. PubMed ID: 38949697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mycobacterium tuberculosis is able to accumulate and utilize cholesterol.
    Brzostek A; Pawelczyk J; Rumijowska-Galewicz A; Dziadek B; Dziadek J
    J Bacteriol; 2009 Nov; 191(21):6584-91. PubMed ID: 19717592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR Interference Reveals That All-
    Babunovic GH; DeJesus MA; Bosch B; Chase MR; Barbier T; Dickey AK; Bryson BD; Rock JM; Fortune SM
    mBio; 2022 Feb; 13(1):e0368321. PubMed ID: 35038923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species.
    van Wyk R; van Wyk M; Mashele SS; Nelson DR; Syed K
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818787
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Mashabela GT; de Wet TJ; Warner DF
    Microbiol Spectr; 2019 Jul; 7(4):. PubMed ID: 31350832
    [No Abstract]   [Full Text] [Related]  

  • 37. Emerging therapeutic targets in tuberculosis: post-genomic era.
    Khasnobis S; Escuyer VE; Chatterjee D
    Expert Opin Ther Targets; 2002 Feb; 6(1):21-40. PubMed ID: 11901479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection.
    Lin MY; Ottenhoff TH
    Biol Chem; 2008 May; 389(5):497-511. PubMed ID: 18953716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis.
    Jackson M; McNeil MR; Brennan PJ
    Future Microbiol; 2013 Jul; 8(7):855-75. PubMed ID: 23841633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis.
    Wang X; Wang H; Xie J
    Sci China Life Sci; 2011 Apr; 54(4):300-10. PubMed ID: 21267668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.