These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Ranjbar-Mohammadi M; Bahrami SH Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898 [TBL] [Abstract][Full Text] [Related]
4. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860 [TBL] [Abstract][Full Text] [Related]
5. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
6. Cytosine-Functionalized Supramolecular Polymer-Mediated Cellular Behavior and Wound Healing. Cheng CC; Yang XJ; Fan WL; Lee AW; Lai JY Biomacromolecules; 2020 Sep; 21(9):3857-3866. PubMed ID: 32786524 [TBL] [Abstract][Full Text] [Related]
7. Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Alemayehu YA; Ilhami FB; Manayia AH; Cheng CC Acta Biomater; 2021 Jul; 129():235-244. PubMed ID: 34087441 [TBL] [Abstract][Full Text] [Related]
8. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials. Elacqua E; Lye DS; Weck M Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing Polymers with Supramolecular Functionality for Biological Applications. Pekkanen AM; Mondschein RJ; Williams CB; Long TE Biomacromolecules; 2017 Sep; 18(9):2669-2687. PubMed ID: 28762718 [TBL] [Abstract][Full Text] [Related]
10. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment. Vaikkath D; Anitha R; Sumathy B; Nair PD Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666 [TBL] [Abstract][Full Text] [Related]
12. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications. Kharaziha M; Fathi MH; Edris H Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153 [TBL] [Abstract][Full Text] [Related]
13. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation. Cheng CC; Chang FC; Kao WY; Hwang SM; Liao LC; Chang YJ; Liang MC; Chen JK; Lee DJ Acta Biomater; 2016 Mar; 33():194-202. PubMed ID: 26796210 [TBL] [Abstract][Full Text] [Related]
15. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links. Wang K; Cai L; Hao F; Xu X; Cui M; Wang S Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174 [TBL] [Abstract][Full Text] [Related]
16. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite. Shokrollahi P; Mirzadeh H; Scherman OA; Huck WT J Biomed Mater Res A; 2010 Oct; 95(1):209-21. PubMed ID: 20574978 [TBL] [Abstract][Full Text] [Related]
17. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways. Brugmans MCP; Sӧntjens SHM; Cox MAJ; Nandakumar A; Bosman AW; Mes T; Janssen HM; Bouten CVC; Baaijens FPT; Driessen-Mol A Acta Biomater; 2015 Nov; 27():21-31. PubMed ID: 26316031 [TBL] [Abstract][Full Text] [Related]
18. Modification of fibrous poly(L-lactic acid) scaffolds with self-assembling triblock molecules. Stendahl JC; Li L; Claussen RC; Stupp SI Biomaterials; 2004 Dec; 25(27):5847-56. PubMed ID: 15172497 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery. Wang D; Su Y; Jin C; Zhu B; Pang Y; Zhu L; Liu J; Tu C; Yan D; Zhu X Biomacromolecules; 2011 Apr; 12(4):1370-9. PubMed ID: 21366351 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]