These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1034 related articles for article (PubMed ID: 28003144)

  • 21. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior.
    Cheng CC; Gebeyehu BT; Huang SY; Abebe Alemayehu Y; Sun YT; Lai YC; Chang YH; Lai JY; Lee DJ
    J Colloid Interface Sci; 2019 Sep; 552():166-178. PubMed ID: 31125827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering.
    Valmikinathan CM; Chang W; Xu J; Yu X
    Biofabrication; 2012 Sep; 4(3):035006. PubMed ID: 22914662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z
    Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy.
    Cheng CC; Liang MC; Liao ZS; Huang JJ; Lee DJ
    Macromol Biosci; 2017 May; 17(5):. PubMed ID: 27918644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of anti-CD31 antibody on electrospun poly(ɛ-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells.
    Zhang M; Wang Z; Wang Z; Feng S; Xu H; Zhao Q; Wang S; Fang J; Qiao M; Kong D
    Colloids Surf B Biointerfaces; 2011 Jun; 85(1):32-9. PubMed ID: 21123036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P
    J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity.
    Antunes JC; Oliveira JM; Reis RL; Soria JM; Gómez-Ribelles JL; Mano JF
    J Biomed Mater Res A; 2010 Sep; 94(3):856-69. PubMed ID: 20336752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro.
    Mei N; Chen G; Zhou P; Chen X; Shao ZZ; Pan LF; Wu CG
    J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.
    Wu Y; Wang L; Zhao X; Hou S; Guo B; Ma PX
    Biomaterials; 2016 Oct; 104():18-31. PubMed ID: 27424213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties.
    Gloria A; Causa F; Russo T; Battista E; Della Moglie R; Zeppetelli S; De Santis R; Netti PA; Ambrosio L
    Biomacromolecules; 2012 Nov; 13(11):3510-21. PubMed ID: 23030686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 52.