BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28003194)

  • 1. LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.
    Wilson CM; Klingeman DM; Schlachter C; Syed MH; Wu CW; Guss AM; Brown SD
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of the celC operon of Clostridium thermocellum by laminaribiose.
    Newcomb M; Chen CY; Wu JH
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3747-52. PubMed ID: 17360424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-transcription of the celC gene cluster in Clostridium thermocellum.
    Newcomb M; Millen J; Chen CY; Wu JH
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):625-34. PubMed ID: 21318364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The LacI family protein GlyR3 co-regulates the
    Choi J; Klingeman DM; Brown SD; Cox CD
    Biotechnol Biofuels; 2017; 10():163. PubMed ID: 28652864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum.
    Mearls EB; Olson DG; Herring CD; Lynd LR
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7589-99. PubMed ID: 25994254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture.
    Stevenson DM; Weimer PJ
    Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Biomass-Sensing Regulons of Clostridium thermocellum Alternative Sigma-I Factors in a Heterologous Bacillus subtilis Host System.
    Muñoz-Gutiérrez I; Ortiz de Ora L; Rozman Grinberg I; Garty Y; Bayer EA; Shoham Y; Lamed R; Borovok I
    PLoS One; 2016; 11(1):e0146316. PubMed ID: 26731480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose.
    Riederer A; Takasuka TE; Makino S; Stevenson DM; Bukhman YV; Elsen NL; Fox BG
    Appl Environ Microbiol; 2011 Feb; 77(4):1243-53. PubMed ID: 21169455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum.
    Nataf Y; Yaron S; Stahl F; Lamed R; Bayer EA; Scheper TH; Sonenshein AL; Shoham Y
    J Bacteriol; 2009 Jan; 191(1):203-9. PubMed ID: 18952792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA (σ(A)) and alternative SigI6 (σ(I6)) factors.
    Sand A; Holwerda EK; Ruppertsberger NM; Maloney M; Olson DG; Nataf Y; Borovok I; Sonenshein AL; Bayer EA; Lamed R; Lynd LR; Shoham Y
    FEBS Lett; 2015 Oct; 589(20 Pt B):3133-40. PubMed ID: 26320414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis of a Clostridium thermocellum strain engineered to utilize xylose: responses to xylose versus cellobiose feeding.
    Tafur Rangel AE; Croft T; González Barrios AF; Reyes LH; Maness PC; Chou KJ
    Sci Rep; 2020 Sep; 10(1):14517. PubMed ID: 32884054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
    Raman B; McKeown CK; Rodriguez M; Brown SD; Mielenz JR
    BMC Microbiol; 2011 Jun; 11():134. PubMed ID: 21672225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory Evolution and Reverse Engineering of
    Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors.
    Nataf Y; Bahari L; Kahel-Raifer H; Borovok I; Lamed R; Bayer EA; Sonenshein AL; Shoham Y
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18646-51. PubMed ID: 20937888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of alternative sigma-I7 factor induces the transcription of cellulosomal genes in the cellulolytic bacterium Clostridium thermocellum.
    Ichikawa S; Ito D; Asaoka S; Abe R; Katsuo N; Ito T; Ito D; Karita S
    Enzyme Microb Technol; 2022 May; 156():110002. PubMed ID: 35168167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations.
    Thompson RA; Trinh CT
    Biotechnol Bioeng; 2017 Nov; 114(11):2592-2604. PubMed ID: 28671264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.