BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 28003194)

  • 21. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.
    Leitão VO; Noronha EF; Camargo BR; Hamann PRV; Steindorff AS; Quirino BF; de Sousa MV; Ulhoa CJ; Felix CR
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):825-834. PubMed ID: 28181082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum.
    Mearls EB; Lynd LR
    Anaerobe; 2014 Aug; 28():109-19. PubMed ID: 24933585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Lo J; Zheng T; Hon S; Olson DG; Lynd LR
    J Bacteriol; 2015 Apr; 197(8):1386-93. PubMed ID: 25666131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning of LicB from Clostridium thermocellum and its efficient secretive expression of thermostable β-1,3-1,4-glucanase.
    Luo Z; Gao Q; Li X; Bao J
    Appl Biochem Biotechnol; 2014 May; 173(2):562-70. PubMed ID: 24659048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deciphering Cellodextrin and Glucose Uptake in
    Yan F; Dong S; Liu YJ; Yao X; Chen C; Xiao Y; Bayer EA; Shoham Y; You C; Cui Q; Feng Y
    mBio; 2022 Oct; 13(5):e0147622. PubMed ID: 36069444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose.
    Chou KJ; Croft T; Hebdon SD; Magnusson LR; Xiong W; Reyes LH; Chen X; Miller EJ; Riley DM; Dupuis S; Laramore KA; Keller LM; Winkelman D; Maness PC
    Metab Eng; 2024 May; 83():193-205. PubMed ID: 38631458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formate synthesis by Clostridium thermocellum during anaerobic fermentation.
    Sparling R; Islam R; Cicek N; Carere C; Chow H; Levin DB
    Can J Microbiol; 2006 Jul; 52(7):681-8. PubMed ID: 16917525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress.
    Yang S; Giannone RJ; Dice L; Yang ZK; Engle NL; Tschaplinski TJ; Hettich RL; Brown SD
    BMC Genomics; 2012 Jul; 13():336. PubMed ID: 22823947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8.
    de Camargo BR; Claassens NJ; Quirino BF; Noronha EF; Kengen SWM
    Enzyme Microb Technol; 2018 Feb; 109():74-83. PubMed ID: 29224629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.
    Burton E; Martin VJ
    Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase.
    Mizutani K; Fernandes VO; Karita S; Luís AS; Sakka M; Kimura T; Jackson A; Zhang X; Fontes CM; Gilbert HJ; Sakka K
    Appl Environ Microbiol; 2012 Jul; 78(14):4781-7. PubMed ID: 22562994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.
    Shao X; Raman B; Zhu M; Mielenz JR; Brown SD; Guss AM; Lynd LR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):641-52. PubMed ID: 21874277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase.
    Dror TW; Rolider A; Bayer EA; Lamed R; Shoham Y
    J Bacteriol; 2005 Apr; 187(7):2261-6. PubMed ID: 15774868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum.
    Jindou S; Xu Q; Kenig R; Shulman M; Shoham Y; Bayer EA; Lamed R
    FEMS Microbiol Lett; 2006 Jan; 254(2):308-16. PubMed ID: 16445761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.
    Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.
    Tian L; Perot SJ; Hon S; Zhou J; Liang X; Bouvier JT; Guss AM; Olson DG; Lynd LR
    Microb Cell Fact; 2017 Oct; 16(1):171. PubMed ID: 28978312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313.
    Feinberg L; Foden J; Barrett T; Davenport KW; Bruce D; Detter C; Tapia R; Han C; Lapidus A; Lucas S; Cheng JF; Pitluck S; Woyke T; Ivanova N; Mikhailova N; Land M; Hauser L; Argyros DA; Goodwin L; Hogsett D; Caiazza N
    J Bacteriol; 2011 Jun; 193(11):2906-7. PubMed ID: 21460082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.
    Oguntimein GB; Rodriguez M; Dumitrache A; Shollenberger T; Decker SR; Davison BH; Brown SD
    Biotechnol Lett; 2018 Feb; 40(2):303-308. PubMed ID: 29124514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Zheng T; Olson DG; Tian L; Bomble YJ; Himmel ME; Lo J; Hon S; Shaw AJ; van Dijken JP; Lynd LR
    J Bacteriol; 2015 Aug; 197(15):2610-9. PubMed ID: 26013492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.