These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28003472)

  • 1. A decision underlies phototaxis in an insect.
    Gorostiza EA; Colomb J; Brembs B
    Open Biol; 2016 Dec; 6(12):. PubMed ID: 28003472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innate visual preferences and behavioral flexibility in
    Grabowska MJ; Steeves J; Alpay J; Van De Poll M; Ertekin D; van Swinderen B
    J Exp Biol; 2018 Dec; 221(Pt 23):. PubMed ID: 30322983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective action or individual choice: Spontaneity and individuality contribute to decision-making in Drosophila.
    Steymans I; Pujol-Lereis LM; Brembs B; Gorostiza EA
    PLoS One; 2021; 16(8):e0256560. PubMed ID: 34437617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster.
    Pauls D; Blechschmidt C; Frantzmann F; El Jundi B; Selcho M
    Sci Rep; 2018 Oct; 8(1):15314. PubMed ID: 30333565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila tracks carbon dioxide in flight.
    Wasserman S; Salomon A; Frye MA
    Curr Biol; 2013 Feb; 23(4):301-6. PubMed ID: 23352695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement signalling in Drosophila; dopamine does it all after all.
    Waddell S
    Curr Opin Neurobiol; 2013 Jun; 23(3):324-9. PubMed ID: 23391527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning.
    Sabandal JM; Sabandal PR; Kim YC; Han KA
    J Neurosci; 2020 May; 40(21):4240-4250. PubMed ID: 32277043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster.
    Chen A; Ng F; Lebestky T; Grygoruk A; Djapri C; Lawal HO; Zaveri HA; Mehanzel F; Najibi R; Seidman G; Murphy NP; Kelly RL; Ackerson LC; Maidment NT; Jackson FR; Krantz DE
    Genetics; 2013 Jan; 193(1):159-76. PubMed ID: 23086220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.
    Leyton V; Goles NI; Fuenzalida-Uribe N; Campusano JM
    Neurosci Lett; 2014 Feb; 560():16-20. PubMed ID: 24334164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing approach behavior of Drosophila melanogaster in Buridan's paradigm.
    Han R; Wei TM; Tseng SC; Lo CC
    PLoS One; 2021; 16(1):e0245990. PubMed ID: 33507934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord.
    Pyakurel P; Privman Champaloux E; Venton BJ
    ACS Chem Neurosci; 2016 Aug; 7(8):1112-9. PubMed ID: 27326831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the Binding of Octopamine and Dopamine in Insect Monoamine Transporters Reveals Structural and Electrostatic Differences.
    Arancibia S; Marambio M; Campusano JM; Fierro A
    ACS Chem Neurosci; 2019 May; 10(5):2310-2317. PubMed ID: 30605598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered reward signalling through octopamine and dopamine in Drosophila.
    Burke CJ; Huetteroth W; Owald D; Perisse E; Krashes MJ; Das G; Gohl D; Silies M; Certel S; Waddell S
    Nature; 2012 Dec; 492(7429):433-7. PubMed ID: 23103875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels.
    Brembs B; Christiansen F; Pflüger HJ; Duch C
    J Neurosci; 2007 Oct; 27(41):11122-31. PubMed ID: 17928454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Phototaxis and adaptation of the eyeless Drosophila melanogaster line].
    Kirpichenko TV; Vorob'eva LI
    Tsitol Genet; 2001; 35(3):30-4. PubMed ID: 11785430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila.
    Schwaerzel M; Monastirioti M; Scholz H; Friggi-Grelin F; Birman S; Heisenberg M
    J Neurosci; 2003 Nov; 23(33):10495-502. PubMed ID: 14627633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral dissection of Drosophila larval phototaxis.
    Gong Z
    Biochem Biophys Res Commun; 2009 May; 382(2):395-9. PubMed ID: 19285485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila.
    Sayin S; De Backer JF; Siju KP; Wosniack ME; Lewis LP; Frisch LM; Gansen B; Schlegel P; Edmondson-Stait A; Sharifi N; Fisher CB; Calle-Schuler SA; Lauritzen JS; Bock DD; Costa M; Jefferis GSXE; Gjorgjieva J; Grunwald Kadow IC
    Neuron; 2019 Nov; 104(3):544-558.e6. PubMed ID: 31471123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystathionine β-synthase Deficiency Impairs Vision in the Fruit Fly,
    Flores-Flores M; Moreno-García L; Castro-Martínez F; Nahmad M
    Curr Eye Res; 2021 Apr; 46(4):600-605. PubMed ID: 32865440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the release of endogenous amines in Drosophila brain in vivo in response to stimuli linked to aversive olfactory conditioning.
    Hidalgo S; Fuenzalida-Uribe N; Molina-Mateo D; Escobar AP; Oliva C; España RA; Andrés ME; Campusano JM
    J Neurochem; 2021 Feb; 156(3):337-351. PubMed ID: 32596813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.