These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28003609)

  • 41. Cardiac magnetic resonance elastography. Initial results.
    Elgeti T; Rump J; Hamhaber U; Papazoglou S; Hamm B; Braun J; Sack I
    Invest Radiol; 2008 Nov; 43(11):762-72. PubMed ID: 18923255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model.
    Dao TT; Pouletaut P; Charleux F; Tho MC; Bensamoun S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4026-9. PubMed ID: 25570875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with magnetic resonance elastography (MRE).
    Leclerc GE; Debernard L; Foucart F; Robert L; Pelletier KM; Charleux F; Ehman R; Ho Ba Tho MC; Bensamoun SF
    J Biomech; 2012 Apr; 45(6):952-7. PubMed ID: 22284992
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inversion-recovery MR elastography of the human brain for improved stiffness quantification near fluid-solid boundaries.
    Lilaj L; Herthum H; Meyer T; Shahryari M; Bertalan G; Caiazzo A; Braun J; Fischer T; Hirsch S; Sack I
    Magn Reson Med; 2021 Nov; 86(5):2552-2561. PubMed ID: 34184306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Performance of 2-Dimensional Ultrasound Shear Wave Elastography in Liver Fibrosis Detection Using Magnetic Resonance Elastography as the Reference Standard: A Pilot Study.
    Song P; Mellema DC; Sheedy SP; Meixner DD; Karshen RM; Urban MW; Manduca A; Sanchez W; Callstrom MR; Greenleaf JF; Chen S
    J Ultrasound Med; 2016 Feb; 35(2):401-12. PubMed ID: 26782164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A multi-purpose electromagnetic actuator for magnetic resonance elastography.
    Feng Y; Zhu M; Qiu S; Shen P; Ma S; Zhao X; Hu CH; Guo L
    Magn Reson Imaging; 2018 Sep; 51():29-34. PubMed ID: 29679635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnetic resonance elastography using an air ball-actuator.
    Numano T; Kawabata Y; Mizuhara K; Washio T; Nitta N; Homma K
    Magn Reson Imaging; 2013 Jul; 31(6):939-46. PubMed ID: 23602728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MR elastography of the head and neck: driver design and initial results.
    Yeung DK; Bhatia KS; Lee YY; King AD; Garteiser P; Sinkus R; Ahuja AT
    Magn Reson Imaging; 2013 May; 31(4):624-9. PubMed ID: 23164497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel technique for MR elastography of the prostate using a modified standard endorectal coil as actuator.
    Thörmer G; Reiss-Zimmermann M; Otto J; Hoffmann KT; Moche M; Garnov N; Kahn T; Busse H
    J Magn Reson Imaging; 2013 Jun; 37(6):1480-5. PubMed ID: 23055397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain.
    Hamhaber U; Sack I; Papazoglou S; Rump J; Klatt D; Braun J
    Acta Biomater; 2007 Jan; 3(1):127-37. PubMed ID: 17067861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative shear wave magnetic resonance elastography: comparison to a dynamic shear material test.
    Ringleb SI; Chen Q; Lake DS; Manduca A; Ehman RL; An KN
    Magn Reson Med; 2005 May; 53(5):1197-201. PubMed ID: 15844144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Piezoelectric actuator design for MR elastography: implementation and vibration issues.
    Tse ZT; Chan YJ; Janssen H; Hamed A; Young I; Lamperth M
    Int J Med Robot; 2011 Sep; 7(3):353-60. PubMed ID: 21793149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Needle shear wave driver for magnetic resonance elastography.
    Chan QC; Li G; Ehman RL; Grimm RC; Li R; Yang ES
    Magn Reson Med; 2006 May; 55(5):1175-9. PubMed ID: 16528708
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging the shear modulus of the heel fat pads.
    Weaver JB; Doyley M; Cheung Y; Kennedy F; Madsen EL; Van Houten EE; Paulsen K
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):312-9. PubMed ID: 15698705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Viscoelastic properties of human cerebellum using magnetic resonance elastography.
    Zhang J; Green MA; Sinkus R; Bilston LE
    J Biomech; 2011 Jul; 44(10):1909-13. PubMed ID: 21565346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: Application to in vivo lower leg muscles.
    Guo J; Hirsch S; Scheel M; Braun J; Sack I
    Magn Reson Med; 2016 Apr; 75(4):1537-45. PubMed ID: 25988407
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MR elastography monitoring of tissue-engineered constructs.
    Othman SF; Curtis ET; Plautz SA; Pannier AK; Butler SD; Xu H
    NMR Biomed; 2012 Mar; 25(3):452-63. PubMed ID: 21387443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of quantitative shear wave MR-elastography with mechanical compression tests.
    Hamhaber U; Grieshaber FA; Nagel JH; Klose U
    Magn Reson Med; 2003 Jan; 49(1):71-7. PubMed ID: 12509821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An analytical solution to the dispersion-by-inversion problem in magnetic resonance elastography.
    Mura J; Schrank F; Sack I
    Magn Reson Med; 2020 Jul; 84(1):61-71. PubMed ID: 32141650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shear Wave Ultrasound Elastographic Evaluation of the Rotator Cuff Tendon.
    Hou SW; Merkle AN; Babb JS; McCabe R; Gyftopoulos S; Adler RS
    J Ultrasound Med; 2017 Jan; 36(1):95-106. PubMed ID: 27914201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.