These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 28004143)

  • 1. Elementary proof of convergence to the mean-field model for the SIR process.
    Armbruster B; Beck E
    J Math Biol; 2017 Aug; 75(2):327-339. PubMed ID: 28004143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The large graph limit of a stochastic epidemic model on a dynamic multilayer network.
    Jacobsen KA; Burch MG; Tien JH; Rempała GA
    J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptible-infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations.
    Li C; van de Bovenkamp R; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026116. PubMed ID: 23005834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIS Epidemic Propagation on Hypergraphs.
    Bodó Á; Katona GY; Simon PL
    Bull Math Biol; 2016 Apr; 78(4):713-735. PubMed ID: 27033348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated.
    Cator E; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052802. PubMed ID: 25353839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated".
    Rodríguez PM; Roldán-Correa A; Valencia LA
    Phys Rev E; 2018 Aug; 98(2-2):026301. PubMed ID: 30253510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fractional Order Recovery SIR Model from a Stochastic Process.
    Angstmann CN; Henry BI; McGann AV
    Bull Math Biol; 2016 Mar; 78(3):468-99. PubMed ID: 26940822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous and discrete SIR-models with spatial distributions.
    Paeng SH; Lee J
    J Math Biol; 2017 Jun; 74(7):1709-1727. PubMed ID: 27796478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic SIR epidemics in a population with households and schools.
    Ouboter T; Meester R; Trapman P
    J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
    Christen A; Maulén-Yañez MA; González-Olivares E; Curé M
    J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective degree network disease models.
    Lindquist J; Ma J; van den Driessche P; Willeboordse FH
    J Math Biol; 2011 Feb; 62(2):143-64. PubMed ID: 20179932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
    Britton T; Juher D; Saldaña J
    Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A covering-graph approach to epidemics on SIS and SIS-like networks.
    Floyd W; Kay L; Shapiro M
    Bull Math Biol; 2012 Jan; 74(1):175-89. PubMed ID: 21989564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptible-infected-susceptible epidemics on the complete graph and the star graph: exact analysis.
    Cator E; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012811. PubMed ID: 23410392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium statistical mechanics of a susceptible-infected-recovered epidemic model.
    Omata K
    Phys Rev E; 2017 Aug; 96(2-1):022404. PubMed ID: 28950494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis.
    Szabó-Solticzky A; Berthouze L; Kiss IZ; Simon PL
    J Math Biol; 2016 Apr; 72(5):1153-76. PubMed ID: 26063525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epidemic model based on the approximation for third-order motifs on networks.
    Li J; Li W; Jin Z
    Math Biosci; 2018 Mar; 297():12-26. PubMed ID: 29330075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the number of recovered individuals in the SIS and SIR stochastic epidemic models.
    Artalejo JR; Economou A; Lopez-Herrero MJ
    Math Biosci; 2010 Nov; 228(1):45-55. PubMed ID: 20801133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptible-infectious-recovered models revisited: from the individual level to the population level.
    Magal P; Ruan S
    Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.