These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28004152)
1. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability. Zeng WY; Tang YQ; Gou M; Sun ZY; Xia ZY; Kida K Appl Microbiol Biotechnol; 2017 Feb; 101(4):1753-1767. PubMed ID: 28004152 [TBL] [Abstract][Full Text] [Related]
2. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525 [TBL] [Abstract][Full Text] [Related]
3. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Xu JR; Zhao XQ; Liu CG; Bai FW Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658 [TBL] [Abstract][Full Text] [Related]
4. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
5. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
6. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM; Saimura M; Kodaki T J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809 [TBL] [Abstract][Full Text] [Related]
7. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptome Analysis of Recombinant Industrial Saccharomyces cerevisiae Strains with Different Xylose Utilization Pathways. Li YC; Xie CY; Yang BX; Tang YQ; Wu B; Sun ZY; Gou M; Xia ZY Appl Biochem Biotechnol; 2019 Nov; 189(3):1007-1019. PubMed ID: 31161382 [TBL] [Abstract][Full Text] [Related]
9. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
11. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
12. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385 [TBL] [Abstract][Full Text] [Related]
13. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Shen Y; Chen X; Peng B; Chen L; Hou J; Bao X Appl Microbiol Biotechnol; 2012 Nov; 96(4):1079-91. PubMed ID: 23053078 [TBL] [Abstract][Full Text] [Related]
14. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
15. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014 [TBL] [Abstract][Full Text] [Related]
16. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. Kim SR; Lee KS; Kong II; Lesmana A; Lee WH; Seo JH; Kweon DH; Jin YS J Biotechnol; 2013 Mar; 164(1):105-11. PubMed ID: 23376240 [TBL] [Abstract][Full Text] [Related]
17. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783 [TBL] [Abstract][Full Text] [Related]
19. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]