These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 28004338)

  • 1. Network Analysis Identifies Disease-Specific Pathways for Parkinson's Disease.
    Monti C; Colugnat I; Lopiano L; Chiò A; Alberio T
    Mol Neurobiol; 2018 Jan; 55(1):370-381. PubMed ID: 28004338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale.
    Ruffini N; Klingenberg S; Schweiger S; Gerber S
    Cells; 2020 Dec; 9(12):. PubMed ID: 33302607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Alterations in Metabolism and Proteolysis-Related Proteins in Human Parkinson's Disease Substantia Nigra.
    Grünblatt E; Ruder J; Monoranu CM; Riederer P; Youdim MB; Mandel SA
    Neurotox Res; 2018 Apr; 33(3):560-568. PubMed ID: 29218503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heredity in Parkinson's disease: new findings.
    Lev N; Melamed E
    Isr Med Assoc J; 2001 Jun; 3(6):435-8. PubMed ID: 11433638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson's disease.
    Ebadi M; Govitrapong P; Sharma S; Muralikrishnan D; Shavali S; Pellett L; Schafer R; Albano C; Eken J
    Biol Signals Recept; 2001; 10(3-4):224-53. PubMed ID: 11351130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease.
    Novikova L; Garris BL; Garris DR; Lau YS
    Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal response in Alzheimer's and Parkinson's disease: the effect of toxic proteins on intracellular pathways.
    Majd S; Power JH; Grantham HJ
    BMC Neurosci; 2015 Oct; 16():69. PubMed ID: 26499115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson's disease pathogenesis.
    Licker V; Turck N; Kövari E; Burkhardt K; Côte M; Surini-Demiri M; Lobrinus JA; Sanchez JC; Burkhard PR
    Proteomics; 2014 Mar; 14(6):784-94. PubMed ID: 24449343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteomic approach in the study of an animal model of Parkinson's disease.
    De Iuliis A; Grigoletto J; Recchia A; Giusti P; Arslan P
    Clin Chim Acta; 2005 Jul; 357(2):202-9. PubMed ID: 15946658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease.
    Yamada M; Iwatsubo T; Mizuno Y; Mochizuki H
    J Neurochem; 2004 Oct; 91(2):451-61. PubMed ID: 15447678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of mouse models of Parkinson's disease.
    Bobela W; Zheng L; Schneider BL
    Curr Protoc Mouse Biol; 2014 Sep; 4(3):121-39. PubMed ID: 25723963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image analyser-assisted morphometry of the locus coeruleus in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis.
    Hoogendijk WJ; Pool CW; Troost D; van Zwieten E; Swaab DF
    Brain; 1995 Feb; 118 ( Pt 1)():131-43. PubMed ID: 7894999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parkinson's disease: Autoimmunity and neuroinflammation.
    De Virgilio A; Greco A; Fabbrini G; Inghilleri M; Rizzo MI; Gallo A; Conte M; Rosato C; Ciniglio Appiani M; de Vincentiis M
    Autoimmun Rev; 2016 Oct; 15(10):1005-11. PubMed ID: 27497913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs in Parkinson's disease.
    Singh A; Sen D
    Exp Brain Res; 2017 Aug; 235(8):2359-2374. PubMed ID: 28526930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatic analysis for the identification of key candidate genes and pathways in the substantia nigra in Parkinson's disease.
    Liu H; Huang Y; Li J
    J Integr Neurosci; 2018; 17(3-4):619-631. PubMed ID: 30010140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic overlap between Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease.
    Wightman DP; Savage JE; Tissink E; Romero C; Jansen IE; Posthuma D
    Neurobiol Aging; 2023 Jul; 127():99-112. PubMed ID: 37045620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene networks in neurodegenerative disorders.
    Recabarren D; Alarcón M
    Life Sci; 2017 Aug; 183():83-97. PubMed ID: 28623007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.