These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 28004475)
1. Structure-based approaches for the design of benzimidazole-2-carbamate derivatives as tubulin polymerization inhibitors. Aguayo-Ortiz R; Cano-González L; Castillo R; Hernández-Campos A; Dominguez L Chem Biol Drug Des; 2017 Jul; 90(1):40-51. PubMed ID: 28004475 [TBL] [Abstract][Full Text] [Related]
2. Molecular basis for benzimidazole resistance from a novel β-tubulin binding site model. Aguayo-Ortiz R; Méndez-Lucio O; Romo-Mancillas A; Castillo R; Yépez-Mulia L; Medina-Franco JL; Hernández-Campos A J Mol Graph Model; 2013 Sep; 45():26-37. PubMed ID: 23995453 [TBL] [Abstract][Full Text] [Related]
3. Towards the identification of the binding site of benzimidazoles to β-tubulin of Trichinella spiralis: insights from computational and experimental data. Aguayo-Ortiz R; Méndez-Lucio O; Medina-Franco JL; Castillo R; Yépez-Mulia L; Hernández-Luis F; Hernández-Campos A J Mol Graph Model; 2013 Apr; 41():12-9. PubMed ID: 23454612 [TBL] [Abstract][Full Text] [Related]
4. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. Kumbhar BV; Bhandare VV; Panda D; Kunwar A J Biomol Struct Dyn; 2020 Feb; 38(2):426-438. PubMed ID: 30831055 [TBL] [Abstract][Full Text] [Related]
5. Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. Kumbhar BV; Panda D; Kunwar A PLoS One; 2018; 13(3):e0194934. PubMed ID: 29584771 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the colchicine binding site on avian tubulin isotype betaVI. Sharma S; Poliks B; Chiauzzi C; Ravindra R; Blanden AR; Bane S Biochemistry; 2010 Apr; 49(13):2932-42. PubMed ID: 20178367 [TBL] [Abstract][Full Text] [Related]
7. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. Wang W; Zhang H; Wang X; Patterson J; Winter P; Graham K; Ghosh S; Lee JC; Katsetos CD; Mackey JR; Tuszynski JA; Wong GK; Ludueña RF Protoplasma; 2017 May; 254(3):1163-1173. PubMed ID: 27943021 [TBL] [Abstract][Full Text] [Related]
8. Binding of [3H]benzimidazole carbamates to mammalian brain tubulin and the mechanism of selective toxicity of the benzimidazole anthelmintics. Russell GJ; Gill JH; Lacey E Biochem Pharmacol; 1992 Mar; 43(5):1095-100. PubMed ID: 1554382 [TBL] [Abstract][Full Text] [Related]
9. Computational study of interactions of anti-cancer drug eribulin with human tubulin isotypes. Rai K; Kumbhar BV; Panda D; Kunwar A Phys Chem Chem Phys; 2022 Jul; 24(27):16694-16700. PubMed ID: 35766982 [TBL] [Abstract][Full Text] [Related]
10. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. Chi S; Xie W; Zhang J; Xu S J Biomol Struct Dyn; 2015; 33(10):2234-54. PubMed ID: 25588192 [TBL] [Abstract][Full Text] [Related]
11. Binding modes of cabazitaxel with the different human β-tubulin isotypes: DFT and MD studies. Zhu L; Zhang C; Lü X; Song C; Wang C; Zhang M; Xie Y; Schaefer HF J Mol Model; 2020 May; 26(6):162. PubMed ID: 32474655 [TBL] [Abstract][Full Text] [Related]
12. Mobility and Core-Protein Binding Patterns of Disordered C-Terminal Tails in β-Tubulin Isotypes. Laurin Y; Eyer J; Robert CH; Prevost C; Sacquin-Mora S Biochemistry; 2017 Mar; 56(12):1746-1756. PubMed ID: 28290671 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of the anticancer potential and tubulin isotype-specific interactions of β-sitosterol. Pradhan M; Suri C; Choudhary S; Naik PK; Lopus M J Biomol Struct Dyn; 2018 Jan; 36(1):195-208. PubMed ID: 27960611 [TBL] [Abstract][Full Text] [Related]
14. Integrating docking and molecular dynamics approaches for a series of proline-based 2,5-diketopiperazines as novel αβ-tubulin inhibitors. Fani N; Bordbar AK; Ghayeb Y; Sepehri S J Biomol Struct Dyn; 2015; 33(10):2285-95. PubMed ID: 25616934 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors. Wang YT; Cai XC; Shi TQ; Zhang YL; Wang ZC; Liu CH; Zhu HL Chem Biol Drug Des; 2017 Jul; 90(1):112-118. PubMed ID: 28032450 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: A docking and molecular dynamics simulation study. Ghadari R; Alavi FS; Zahedi M Comput Biol Chem; 2015 Jun; 56():33-40. PubMed ID: 25854803 [TBL] [Abstract][Full Text] [Related]
17. Computational design of Tryprostatin-A derivatives as novel αβ-tubulin inhibitors. Fani N; Bordbar AK; Ghayeb Y; Sepehri S J Biomol Struct Dyn; 2015; 33(3):471-86. PubMed ID: 24606044 [TBL] [Abstract][Full Text] [Related]
18. Interaction of Colchicine-Site Ligands With the Blood Cell-Specific Isotype of β-Tubulin-Notable Affinity for Benzimidazoles. Montecinos F; Loew M; Chio TI; Bane SL; Sackett DL Front Cell Dev Biol; 2022; 10():884287. PubMed ID: 35712668 [TBL] [Abstract][Full Text] [Related]
19. Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. Tyagi C; Gupta A; Goyal S; Dhanjal J; Grover A BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S3. PubMed ID: 25521775 [TBL] [Abstract][Full Text] [Related]
20. Molecular modeling study on the tubulin-binding modes of epothilone derivatives: Insight into the structural basis for epothilones activity. Jiménez VA; Alderete JB; Navarrete KR Chem Biol Drug Des; 2017 Dec; 90(6):1247-1259. PubMed ID: 28632973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]