These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 28004741)
1. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Ragupathy R; Ravichandran S; Mahdi MS; Huang D; Reimer E; Domaratzki M; Cloutier S Sci Rep; 2016 Dec; 6():39373. PubMed ID: 28004741 [TBL] [Abstract][Full Text] [Related]
2. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis. Kumar D; Dutta S; Singh D; Prabhu KV; Kumar M; Mukhopadhyay K Planta; 2017 Jan; 245(1):161-182. PubMed ID: 27699487 [TBL] [Abstract][Full Text] [Related]
3. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. Paul S; Kundu A; Pal A J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283 [TBL] [Abstract][Full Text] [Related]
4. Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. Zhang Q; Li J; Sang Y; Xing S; Wu Q; Liu X PLoS One; 2015; 10(5):e0127184. PubMed ID: 25978425 [TBL] [Abstract][Full Text] [Related]
5. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. Carnavale Bottino M; Rosario S; Grativol C; Thiebaut F; Rojas CA; Farrineli L; Hemerly AS; Ferreira PC PLoS One; 2013; 8(3):e59423. PubMed ID: 23544066 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. Liu H; Searle IR; Watson-Haigh NS; Baumann U; Mather DE; Able AJ; Able JA PLoS One; 2015; 10(11):e0142799. PubMed ID: 26562166 [TBL] [Abstract][Full Text] [Related]
7. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. Liu H; Able AJ; Able JA Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615 [TBL] [Abstract][Full Text] [Related]
8. High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Kundu A; Paul S; Dey A; Pal A Plant Sci; 2017 Apr; 257():96-105. PubMed ID: 28224923 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. Li S; Shao Z; Fu X; Xiao W; Li L; Chen M; Sun M; Li D; Gao D BMC Genomics; 2017 Dec; 18(1):938. PubMed ID: 29197334 [TBL] [Abstract][Full Text] [Related]
10. Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in Liu H; Able AJ; Able JA Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096606 [TBL] [Abstract][Full Text] [Related]
11. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). Xin M; Wang Y; Yao Y; Xie C; Peng H; Ni Z; Sun Q BMC Plant Biol; 2010 Jun; 10():123. PubMed ID: 20573268 [TBL] [Abstract][Full Text] [Related]
12. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Yusuf NH; Ong WD; Redwan RM; Latip MA; Kumar SV Gene; 2015 Oct; 571(1):71-80. PubMed ID: 26115767 [TBL] [Abstract][Full Text] [Related]
13. Identification of UV-B-induced microRNAs in wheat. Wang B; Sun YF; Song N; Wang XJ; Feng H; Huang LL; Kang ZS Genet Mol Res; 2013 Oct; 12(4):4213-21. PubMed ID: 24114216 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). Han R; Jian C; Lv J; Yan Y; Chi Q; Li Z; Wang Q; Zhang J; Liu X; Zhao H BMC Genomics; 2014 Apr; 15():289. PubMed ID: 24734873 [TBL] [Abstract][Full Text] [Related]
15. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Hao DC; Yang L; Xiao PG; Liu M Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792 [TBL] [Abstract][Full Text] [Related]
16. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Kumar RR; Pathak H; Sharma SK; Kala YK; Nirjal MK; Singh GP; Goswami S; Rai RD Funct Integr Genomics; 2015 May; 15(3):323-48. PubMed ID: 25480755 [TBL] [Abstract][Full Text] [Related]
17. Comparative profiling of microRNAs and their effects on abiotic stress in wild-type and dark green leaf color mutant plants of Anthurium andraeanum 'Sonate'. Jiang L; Tian X; Fu Y; Liao X; Wang G; Chen F Plant Physiol Biochem; 2018 Nov; 132():258-270. PubMed ID: 30237090 [TBL] [Abstract][Full Text] [Related]
18. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. Pandey R; Joshi G; Bhardwaj AR; Agarwal M; Katiyar-Agarwal S PLoS One; 2014; 9(4):e95800. PubMed ID: 24759739 [TBL] [Abstract][Full Text] [Related]
19. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Kantar M; Lucas SJ; Budak H Planta; 2011 Mar; 233(3):471-84. PubMed ID: 21069383 [TBL] [Abstract][Full Text] [Related]
20. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]