BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28004741)

  • 21. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.).
    Kumar RR; Goswami S; Sharma SK; Kala YK; Rai GK; Mishra DC; Grover M; Singh GP; Pathak H; Rai A; Chinnusamy V; Rai RD
    OMICS; 2015 Oct; 19(10):632-47. PubMed ID: 26406536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of drought- and heat-responsive microRNAs in switchgrass.
    Hivrale V; Zheng Y; Puli COR; Jagadeeswaran G; Gowdu K; Kakani VG; Barakat A; Sunkar R
    Plant Sci; 2016 Jan; 242():214-223. PubMed ID: 26566839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An array platform for identification of stress-responsive microRNAs in plants.
    Jia X; Mendu V; Tang G
    Methods Mol Biol; 2010; 639():253-69. PubMed ID: 20387051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in morphology and miRNAs expression in small intestines of Shaoxing ducks in response to high temperature.
    Tian Y; Li G; Bu X; Shen J; Tao Z; Chen L; Zeng T; Du X; Lu L
    Mol Biol Rep; 2019 Aug; 46(4):3843-3856. PubMed ID: 31049835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the small RNA component of leaves and fruits from four different cucurbit species.
    Jagadeeswaran G; Nimmakayala P; Zheng Y; Gowdu K; Reddy UK; Sunkar R
    BMC Genomics; 2012 Jul; 13():329. PubMed ID: 22823569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.).
    Yao Y; Guo G; Ni Z; Sunkar R; Du J; Zhu JK; Sun Q
    Genome Biol; 2007; 8(6):R96. PubMed ID: 17543110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing.
    Chen M; Bao H; Wu Q; Wang Y
    Int J Mol Sci; 2015 Jun; 16(6):13937-58. PubMed ID: 26096002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic identification and characterization of microRNAs with target genes involved in high night temperature stress at the filling stage of rice.
    Fan J; Zhang H; Shi Y; Li Y; He Y; Wang Q; Liu S; Yao Y; Zhou X; Liao J; Huang Y; Wang Z
    Physiol Plant; 2024; 176(2):e14305. PubMed ID: 38659134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress.
    Chen CC; Fu SF; Norikazu M; Yang YW; Liu YJ; Ikeo K; Gojobori T; Huang HJ
    BMC Genomics; 2015 Dec; 16():1026. PubMed ID: 26625945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.).
    Nie S; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Wang R; Xie Y; Gong Y; Liu L
    Sci Rep; 2015 Sep; 5():14034. PubMed ID: 26369897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipopolysaccharide perception leads to dynamic alterations in the microtranscriptome of Arabidopsis thaliana cells and leaf tissues.
    Djami-Tchatchou AT; Dubery IA
    BMC Plant Biol; 2015 Mar; 15():79. PubMed ID: 25848807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of miRNAs and their targets in wheat (Triticum aestivum L.) by EST analysis.
    Han J; Kong ML; Xie H; Sun QP; Nan ZJ; Zhang QZ; Pan JB
    Genet Mol Res; 2013 Sep; 12(3):3793-805. PubMed ID: 24085441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.
    Chen M; Cao Z
    BMC Genomics; 2015 Sep; 16(1):696. PubMed ID: 26370267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The miRNA-Mediated Post-Transcriptional Regulation of Maize in Response to High Temperature.
    Zhang M; An P; Li H; Wang X; Zhou J; Dong P; Zhao Y; Wang Q; Li C
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30970661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miRNA-based drought regulation in wheat.
    Akdogan G; Tufekci ED; Uranbey S; Unver T
    Funct Integr Genomics; 2016 May; 16(3):221-33. PubMed ID: 26141043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice.
    Barrera-Figueroa BE; Gao L; Wu Z; Zhou X; Zhu J; Jin H; Liu R; Zhu JK
    BMC Plant Biol; 2012 Aug; 12():132. PubMed ID: 22862743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.).
    Su C; Yang X; Gao S; Tang Y; Zhao C; Li L
    Genomics; 2014 Apr; 103(4):298-307. PubMed ID: 24667243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors.
    Baldrich P; Campo S; Wu MT; Liu TT; Hsing YI; San Segundo B
    RNA Biol; 2015; 12(8):847-63. PubMed ID: 26083154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.