These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28004783)

  • 1. Temperature and microwave near field imaging by thermo-elastic optical indicator microscopy.
    Lee H; Arakelyan S; Friedman B; Lee K
    Sci Rep; 2016 Dec; 6():39696. PubMed ID: 28004783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous imaging of magnetic field and temperature distributions by magneto optical indicator microscopy.
    Lee H; Jeon S; Friedman B; Lee K
    Sci Rep; 2017 Mar; 7():43804. PubMed ID: 28252018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of microwave near-field distribution in sodium chloride and glucose aqueous solutions by a thermo-elastic optical indicator microscope.
    Baghdasaryan Z; Babajanyan A; Odabashyan L; Lee JH; Friedman B; Lee K
    Sci Rep; 2021 Jan; 11(1):2589. PubMed ID: 33510224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of interaction phenomena of electromagnetic waves with metamaterials via microwave near-field visualization technique.
    Baghdasaryan Z; Babajanyan A; Friedman B; Lee K
    Sci Rep; 2023 Oct; 13(1):18457. PubMed ID: 37891377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave platform as a valuable tool for characterization of nanophotonic devices.
    Shishkin I; Baranov D; Slobozhanyuk A; Filonov D; Lukashenko S; Samusev A; Belov P
    Sci Rep; 2016 Oct; 6():35516. PubMed ID: 27759058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple High-resolution Near-field Probe for Microwave Non-Destructive Test and Imaging.
    Xie Z; Li Y; Sun L; Wu W; Cao R; Tao X
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32392850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric imaging of nonlocal electromechanical power transduction in ferroelectric domains.
    Zheng L; Dong H; Wu X; Huang YL; Wang W; Wu W; Wang Z; Lai K
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5338-5342. PubMed ID: 29735698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband dielectric microwave microscopy on micron length scales.
    Tselev A; Anlage SM; Ma Z; Melngailis J
    Rev Sci Instrum; 2007 Apr; 78(4):044701. PubMed ID: 17477685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy.
    Hung le T; Phuoc NN; Wang XC; Ong CK
    Rev Sci Instrum; 2011 Aug; 82(8):084701. PubMed ID: 21895260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces.
    Huang F; Tamma VA; Mardy Z; Burdett J; Wickramasinghe HK
    Sci Rep; 2015 Jun; 5():10610. PubMed ID: 26073331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magneto-optical imaging of thin magnetic films using spins in diamond.
    Simpson DA; Tetienne JP; McCoey JM; Ganesan K; Hall LT; Petrou S; Scholten RE; Hollenberg LC
    Sci Rep; 2016 Mar; 6():22797. PubMed ID: 26972730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption.
    Ding C; Wei J
    Sci Rep; 2016 Jan; 6():18845. PubMed ID: 26727415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interpretation of near-field optical images.
    Dereux A; Devaux E; Weeber JC; Goudonnet JP; Girard C
    J Microsc; 2001 May; 202(Pt 2):320-31. PubMed ID: 11309090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative model for near-field scanning microwave microscopy: application to metrology of thin film dielectrics.
    Reznik AN; Talanov VV
    Rev Sci Instrum; 2008 Nov; 79(11):113708. PubMed ID: 19045896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-layer graphene characterization by near-field scanning microwave microscopy.
    Talanov VV; Del Barga C; Wickey L; Kalichava I; Gonzales E; Shaner EA; Gin AV; Kalugin NG
    ACS Nano; 2010 Jul; 4(7):3831-8. PubMed ID: 20536187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NUMERICAL SIMULATION ON MICROWAVE REWARMING OF CRYOPRESERVED RABBIT KIDNEY WITH EMBEDDED SUPERPARAMAGNETIC NANOPARTICLES.
    Wang T; Zhao G
    Cryo Letters; 2015; 36(3):213-20. PubMed ID: 26510340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of magnetic materials using a scanning microwave microprobe.
    Melikyan H; Hovsepyan A; Sargsyan T; Yoon Y; Yoo H; Babajanyan A; Lee K
    Ultramicroscopy; 2008 Sep; 108(10):1030-3. PubMed ID: 18547730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field mapping of high permittivity dielectric microwave resonator modes via optically induced conductance.
    Dev SU; Anthony NM; Trendafilov S; Allen MS; Allen JW
    Opt Express; 2022 Apr; 30(8):13583-13590. PubMed ID: 35472967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.