BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28004840)

  • 1. Dual observation of the ATP-evoked small GTPase activation and Ca
    Nakahata Y; Nabekura J; Murakoshi H
    Sci Rep; 2016 Dec; 6():39564. PubMed ID: 28004840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells.
    Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X
    Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving FRET dynamic range with bright green and red fluorescent proteins.
    Lam AJ; St-Pierre F; Gong Y; Marshall JD; Cranfill PJ; Baird MA; McKeown MR; Wiedenmann J; Davidson MW; Schnitzer MJ; Tsien RY; Lin MZ
    Nat Methods; 2012 Oct; 9(10):1005-12. PubMed ID: 22961245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET Imaging of Rho GTPase Activity with Red Fluorescent Protein-Based FRET Pairs.
    Bajar BT; Guan X; Lam A; Lin MZ; Yasuda R; Laviv T; Chu J
    Methods Mol Biol; 2022; 2438():31-43. PubMed ID: 35147933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.
    Inaba H; Miao Q; Nakata T
    J Biol Chem; 2021; 296():100290. PubMed ID: 33453281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca²⁺ regulation of mitochondrial ATP synthesis visualized at the single cell level.
    Nakano M; Imamura H; Nagai T; Noji H
    ACS Chem Biol; 2011 Jul; 6(7):709-15. PubMed ID: 21488691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments.
    Martin KJ; McGhee EJ; Schwarz JP; Drysdale M; Brachmann SM; Stucke V; Sansom OJ; Anderson KI
    PLoS One; 2018; 13(1):e0183585. PubMed ID: 29293509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ShadowY: a dark yellow fluorescent protein for FLIM-based FRET measurement.
    Murakoshi H; Shibata ACE
    Sci Rep; 2017 Jul; 7(1):6791. PubMed ID: 28754922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes.
    Yoshizaki H; Ohba Y; Kurokawa K; Itoh RE; Nakamura T; Mochizuki N; Nagashima K; Matsuda M
    J Cell Biol; 2003 Jul; 162(2):223-32. PubMed ID: 12860967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling.
    Seth A; Otomo T; Yin HL; Rosen MK
    Biochemistry; 2003 Apr; 42(14):3997-4008. PubMed ID: 12680752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells.
    Reinhard NR; van Helden SF; Anthony EC; Yin T; Wu YI; Goedhart J; Gadella TW; Hordijk PL
    Sci Rep; 2016 May; 6():25502. PubMed ID: 27147504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET-based imaging of Rac and Cdc42 activation during Fc-receptor-mediated phagocytosis in macrophages.
    Hoppe AD
    Methods Mol Biol; 2012; 827():235-51. PubMed ID: 22144279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.
    George Abraham B; Sarkisyan KS; Mishin AS; Santala V; Tkachenko NV; Karp M
    PLoS One; 2015; 10(8):e0134436. PubMed ID: 26237400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to measure the interaction of Rac/Cdc42 with their binding partners using fluorescence resonance energy transfer between mutants of green fluorescent protein.
    Graham DL; Lowe PN; Chalk PA
    Anal Biochem; 2001 Sep; 296(2):208-17. PubMed ID: 11554716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically encoded sensors of protein hydrodynamics and molecular proximity.
    Hoepker AC; Wang A; Le Marois A; Suhling K; Yan Y; Marriott G
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2569-74. PubMed ID: 25931526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases.
    Pimenta FM; Huh J; Guzman B; Amanah D; Marston DJ; Pinkin NK; Danuser G; Hahn KM
    Biophys J; 2023 Sep; 122(18):3646-3655. PubMed ID: 37085995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blue fluorescent cGMP sensor for multiparameter fluorescence imaging.
    Niino Y; Hotta K; Oka K
    PLoS One; 2010 Feb; 5(2):e9164. PubMed ID: 20161796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.