BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28004840)

  • 21. [Fret-based single-molecule probes for monitoring induced activation of Rac, Cdc42 signaling pathways in living cells].
    Sun B; Ren DQ; Zhang QY; Qiu YL; Liu RS; Guo XR
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Oct; 41(5):349-58. PubMed ID: 19127770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain.
    Nakamura T; Aoki K; Matsuda M
    Brain Res Mol Brain Res; 2005 Oct; 139(2):277-87. PubMed ID: 16024133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM.
    Hinde E; Digman MA; Hahn KM; Gratton E
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):135-40. PubMed ID: 23248275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration.
    Shen Y; Wu SY; Rancic V; Aggarwal A; Qian Y; Miyashita SI; Ballanyi K; Campbell RE; Dong M
    Commun Biol; 2019; 2():18. PubMed ID: 30652129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic Imaging of Protein Activity Using Two-Photon Fluorescence Lifetime Imaging Microscopy.
    Murakoshi H
    Adv Exp Med Biol; 2021; 1293():295-308. PubMed ID: 33398821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cdc42 and RhoA are differentially regulated during arachidonate-mediated HeLa cell adhesion.
    Roberts LA; Glenn H; Hahn CS; Jacobson BS
    J Cell Physiol; 2003 Jul; 196(1):196-205. PubMed ID: 12767056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions.
    Hodgson L; Spiering D; Sabouri-Ghomi M; Dagliyan O; DerMardirossian C; Danuser G; Hahn KM
    Nat Chem Biol; 2016 Oct; 12(10):802-809. PubMed ID: 27501396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically encoded far-red fluorescent sensors for caspase-3 activity.
    Zlobovskaya OA; Sergeeva TF; Shirmanova MV; Dudenkova VV; Sharonov GV; Zagaynova EV; Lukyanov KA
    Biotechniques; 2016 Feb; 60(2):62-8. PubMed ID: 26842350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing Cdc42 Polarization Dynamics in Budding Yeast Using a Biosensor.
    Okada S; Lee ME; Bi E; Park HO
    Methods Enzymol; 2017; 589():171-190. PubMed ID: 28336063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics.
    Martin K; Reimann A; Fritz RD; Ryu H; Jeon NL; Pertz O
    Sci Rep; 2016 Feb; 6():21901. PubMed ID: 26912264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation.
    Koraïchi F; Gence R; Bouchenot C; Grosjean S; Lajoie-Mazenc I; Favre G; Cabantous S
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29192060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells.
    Frantz C; Coppola T; Regazzi R
    Exp Cell Res; 2002 Feb; 273(2):119-26. PubMed ID: 11822867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing biosensors for Rho family proteins--deciphering the dynamics of Rho family GTPase activation in living cells.
    Pertz O; Hahn KM
    J Cell Sci; 2004 Mar; 117(Pt 8):1313-8. PubMed ID: 15020671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FLIM FRET Visualization of Cdc42 Activation by Netrin-1 in Embryonic Spinal Commissural Neuron Growth Cones.
    Rappaz B; Lai Wing Sun K; Correia JP; Wiseman PW; Kennedy TE
    PLoS One; 2016; 11(8):e0159405. PubMed ID: 27482713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells.
    Kim TJ; Seong J; Ouyang M; Sun J; Lu S; Hong JP; Wang N; Wang Y
    J Cell Physiol; 2009 Feb; 218(2):285-93. PubMed ID: 18844232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Aoki K; Matsuda M
    Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concentric zones of active RhoA and Cdc42 around single cell wounds.
    Benink HA; Bement WM
    J Cell Biol; 2005 Jan; 168(3):429-39. PubMed ID: 15684032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.