These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28004925)

  • 1. Small Molecule-Based Pattern Recognition To Classify RNA Structure.
    Eubanks CS; Forte JE; Kapral GJ; Hargrove AE
    J Am Chem Soc; 2017 Jan; 139(1):409-416. PubMed ID: 28004925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemically classifying DNA structure based on the small molecule-DNA recognition.
    Ling P; Cheng S; Wang L; Sun X; Gao X; Gao F
    Bioelectrochemistry; 2022 Oct; 147():108193. PubMed ID: 35753199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays.
    Kelly ML; Chu CC; Shi H; Ganser LR; Bogerd HP; Huynh K; Hou Y; Cullen BR; Al-Hashimi HM
    RNA; 2021 Jan; 27(1):12-26. PubMed ID: 33028652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays.
    Sztuba-Solinska J; Shenoy SR; Gareiss P; Krumpe LR; Le Grice SF; O'Keefe BR; Schneekloth JS
    J Am Chem Soc; 2014 Jun; 136(23):8402-10. PubMed ID: 24820959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments.
    Davidson A; Begley DW; Lau C; Varani G
    J Mol Biol; 2011 Jul; 410(5):984-96. PubMed ID: 21763501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation and classification of RNA motifs using small molecule-based pattern recognition.
    Padroni G; Eubanks CS; Hargrove AE
    Methods Enzymol; 2019; 623():101-130. PubMed ID: 31239043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAR-RNA recognition by a novel cyclic aminoglycoside analogue.
    Raghunathan D; Sánchez-Pedregal VM; Junker J; Schwiegk C; Kalesse M; Kirschning A; Carlomagno T
    Nucleic Acids Res; 2006; 34(12):3599-608. PubMed ID: 16855296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driving factors in amiloride recognition of HIV RNA targets.
    Patwardhan NN; Cai Z; Umuhire Juru A; Hargrove AE
    Org Biomol Chem; 2019 Oct; 17(42):9313-9320. PubMed ID: 31612165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the TAR RNA and its complex with arginine.
    Sugimoto N; Ohmichi T; Tanaka A; Matsumura A; Sasaki M
    Nucleic Acids Symp Ser; 1993; (29):167-8. PubMed ID: 8247753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing the impact of environment on small molecule differentiation of RNA sequences.
    Eubanks CS; Hargrove AE
    Chem Commun (Camb); 2017 Dec; 53(100):13363-13366. PubMed ID: 29199743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of Hoechst 33258 to the TAR RNA of HIV-1. Recognition of a pyrimidine bulge-dependent structure.
    Dassonneville L; Hamy F; Colson P; Houssier C; Bailly C
    Nucleic Acids Res; 1997 Nov; 25(22):4487-92. PubMed ID: 9358156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.
    Velagapudi SP; Disney MD
    Bioorg Med Chem; 2013 Oct; 21(20):6132-8. PubMed ID: 23719281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales.
    Merriman DK; Xue Y; Yang S; Kimsey IJ; Shakya A; Clay M; Al-Hashimi HM
    Biochemistry; 2016 Aug; 55(32):4445-56. PubMed ID: 27232530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein.
    Davidson A; Leeper TC; Athanassiou Z; Patora-Komisarska K; Karn J; Robinson JA; Varani G
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11931-6. PubMed ID: 19584251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment based search for small molecule inhibitors of HIV-1 Tat-TAR.
    Zeiger M; Stark S; Kalden E; Ackermann B; Ferner J; Scheffer U; Shoja-Bazargani F; Erdel V; Schwalbe H; Göbel MW
    Bioorg Med Chem Lett; 2014 Dec; 24(24):5576-5580. PubMed ID: 25466178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human immunodeficiency virus type 1 TAR RNA upper stem-loop plays distinct roles in reverse transcription and RNA packaging.
    Harrich D; Hooker CW; Parry E
    J Virol; 2000 Jun; 74(12):5639-46. PubMed ID: 10823871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional significance of the dinucleotide bulge in stem-loop1 and stem-loop2 of HIV-2 TAR RNA.
    Rhim H; Rice AP
    Virology; 1994 Jul; 202(1):202-11. PubMed ID: 8009832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 Tat protein is able to efficiently transactivate the HIV-2 LTR through a TAR RNA element lacking both dinucleotide bulge binding sites.
    Rhim H; Rice AP
    Virology; 1995 Jan; 206(1):673-8. PubMed ID: 7831824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of a dinuclear ruthenium(ii) complex to the TAR region of the HIV-AIDS viral RNA.
    Buck DP; Spillane CB; Collins JG; Keene FR
    Mol Biosyst; 2008 Aug; 4(8):851-4. PubMed ID: 18633486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific HIV-1 TAR RNA loop sequence and functional groups are required for human cyclin T1-Tat-TAR ternary complex formation.
    Richter S; Cao H; Rana TM
    Biochemistry; 2002 May; 41(20):6391-7. PubMed ID: 12009901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.