These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28005133)

  • 1. Formulation of Generalized Mass Transfer Correlations for Blood Oxygenator Design.
    Low KW; Van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2017 Mar; 139(3):. PubMed ID: 28005133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators.
    Turri F; Yanagihara JI
    Artif Organs; 2011 Jun; 35(6):579-92. PubMed ID: 21671959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.
    Low KW; van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2016 May; 138(5):051001. PubMed ID: 26902524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow mixing enhancement from balloon pulsations in an intravenous oxygenator.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Jun; 127(3):400-15. PubMed ID: 16060347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro comparison of gas transfer and pressure drop of the Bentley Duraflo Coated Spiral Gold and the Medtronic Carmeda Coated Maxima hollow fiber membrane oxygenators.
    Vocelka CR; Thomas R; Verrier E; Kunzelman K
    J Extra Corpor Technol; 1997 Dec; 29(4):185-8. PubMed ID: 10176127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an implantable oxygenator with cross-flow pump.
    Asakawa Y; Funakubo A; Fukunaga K; Taga I; Higami T; Kawamura T; Fukui Y
    ASAIO J; 2006; 52(3):291-5. PubMed ID: 16760718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.
    Hormes M; Borchardt R; Mager I; Rode TS; Behr M; Steinseifer U
    Int J Artif Organs; 2011 Mar; 34(3):317-25. PubMed ID: 21462147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans.
    D'Onofrio C; van Loon R; Rolland S; Johnston R; North L; Brown S; Phillips R; Sienz J
    Med Eng Phys; 2017 Sep; 47():190-197. PubMed ID: 28716304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for predicting oxygen transport on an intravenous membrane oxygenator combining computational and analytical models.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Dec; 127(7):1127-40. PubMed ID: 16502655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new type of fluorocarbon liquid oxygenator.
    Mottaghy K; Mendler N; Schmid-Schönbein H; Schröck R; Sebening F
    Eur Surg Res; 1976; 8(3):196-203. PubMed ID: 7460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravascular blood oxygenation using hollow fibers in a disk-shaped configuration: experimental evaluation of the relationship between porosity and performance.
    Cattaneo GF; Reul H; Schmitz-Rode T; Steinseifer U
    ASAIO J; 2006; 52(2):180-5. PubMed ID: 16557105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of preprimed oxygenators on gas transfer efficiency.
    Gao C; Stammers AH; Ahlgren RL; Ellis TA; Holcomb HB; Nutter BT; Schmer RG; Hock L
    J Extra Corpor Technol; 2003 Jun; 35(2):121-6. PubMed ID: 12939020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.
    Zhang T; Cheng G; Koert A; Zhang J; Gellman B; Yankey GK; Satpute A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2009 Jan; 33(1):36-45. PubMed ID: 19178439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing blood oxygenators.
    Wickramasinghe SR; Goerke AR; Garcia JD; Han B
    Ann N Y Acad Sci; 2003 Mar; 984():502-14. PubMed ID: 12783841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of nine hollow-fibre membrane oxygenators.
    Segers PA; Heida JF; de Vries I; Maas C; Boogaart AJ; Eilander S
    Perfusion; 2001 Mar; 16(2):95-106. PubMed ID: 11334201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung assist device: development of microfluidic oxygenators for preterm infants with respiratory failure.
    Wu WI; Rochow N; Chan E; Fusch G; Manan A; Nagpal D; Selvaganapathy PR; Fusch C
    Lab Chip; 2013 Jul; 13(13):2641-50. PubMed ID: 23702615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel polyimide hollow-fiber oxygenator.
    Niwa M; Kawakami H; Nagaoka S; Kanamori T; Morisaku K; Shinbo T; Matsuda T; Sakai K; Kubota S
    Artif Organs; 2004 May; 28(5):487-95. PubMed ID: 15113344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.