These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 28005294)
1. Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density. Schneider JV; Habersetzer J; Rabenstein R; Wesenberg J; Wesche K; Zizka G New Phytol; 2017 Apr; 214(1):473-486. PubMed ID: 28005294 [TBL] [Abstract][Full Text] [Related]
2. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Sack L; Scoffoni C; McKown AD; Frole K; Rawls M; Havran JC; Tran H; Tran T Nat Commun; 2012 May; 3():837. PubMed ID: 22588299 [TBL] [Abstract][Full Text] [Related]
3. Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves. Zhang FP; Carins Murphy MR; Cardoso AA; Jordan GJ; Brodribb TJ New Phytol; 2018 Sep; 219(4):1224-1234. PubMed ID: 29761509 [TBL] [Abstract][Full Text] [Related]
4. Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses. Li F; McCulloh KA; Sun S; Bao W Am J Bot; 2018 Nov; 105(11):1858-1868. PubMed ID: 30449045 [TBL] [Abstract][Full Text] [Related]
5. Competition for epidermal space in the evolution of leaves with high physiological rates. Baresch A; Crifò C; Boyce CK New Phytol; 2019 Jan; 221(2):628-639. PubMed ID: 30216453 [TBL] [Abstract][Full Text] [Related]
7. Unified changes in cell size permit coordinated leaf evolution. Brodribb TJ; Jordan GJ; Carpenter RJ New Phytol; 2013 Jul; 199(2):559-570. PubMed ID: 23647069 [TBL] [Abstract][Full Text] [Related]
8. Comparative venation costs of monocotyledon and dicotyledon species in the eastern Colorado steppe. Drobnitch ST; Kray JA; Gleason SM; Ocheltree TW Planta; 2024 May; 260(1):2. PubMed ID: 38761315 [TBL] [Abstract][Full Text] [Related]
9. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. Feild TS; Brodribb TJ New Phytol; 2013 Aug; 199(3):720-6. PubMed ID: 23668223 [TBL] [Abstract][Full Text] [Related]
10. Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits. Kawai K; Okada N Planta; 2019 Nov; 251(1):17. PubMed ID: 31776668 [TBL] [Abstract][Full Text] [Related]
11. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Carins Murphy MR; Jordan GJ; Brodribb TJ Ann Bot; 2016 Nov; 118(6):1127-1138. PubMed ID: 27578763 [TBL] [Abstract][Full Text] [Related]
12. Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum. Cardoso AA; Randall JM; Jordan GJ; McAdam SAM Am J Bot; 2018 Dec; 105(12):1967-1974. PubMed ID: 30475383 [TBL] [Abstract][Full Text] [Related]
13. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Carins Murphy MR; Jordan GJ; Brodribb TJ Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831 [TBL] [Abstract][Full Text] [Related]
14. Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks. Ronellenfitsch H; Lasser J; Daly DC; Katifori E PLoS Comput Biol; 2015 Dec; 11(12):e1004680. PubMed ID: 26700471 [TBL] [Abstract][Full Text] [Related]
15. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Scoffoni C; Rawls M; McKown A; Cochard H; Sack L Plant Physiol; 2011 Jun; 156(2):832-43. PubMed ID: 21511989 [TBL] [Abstract][Full Text] [Related]
16. Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs. Matos IS; Boakye M; Niewiadomski I; Antonio M; Carlos S; Johnson BC; Chu A; Echevarria A; Fontao A; Garcia L; Kalantar D; Madhavan S; Mann J; McDonough S; Rohde J; Scudder M; Sharma S; To J; Tomaka C; Vu B; Yokota N; Forbes H; Fricker M; Blonder BW New Phytol; 2024 Oct; 244(2):407-425. PubMed ID: 39180209 [TBL] [Abstract][Full Text] [Related]
17. Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. Fiorin L; Brodribb TJ; Anfodillo T New Phytol; 2016 Jan; 209(1):216-27. PubMed ID: 26224215 [TBL] [Abstract][Full Text] [Related]
18. Global convergence in the balance between leaf water supply and demand across vascular land plants. Wen Y; Zhao WL; Cao KF Funct Plant Biol; 2020 Sep; 47(10):904-911. PubMed ID: 32635988 [TBL] [Abstract][Full Text] [Related]
19. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Sack L; Scoffoni C; John GP; Poorter H; Mason CM; Mendez-Alonzo R; Donovan LA J Exp Bot; 2013 Oct; 64(13):4053-80. PubMed ID: 24123455 [TBL] [Abstract][Full Text] [Related]
20. Parallel evolution of angiosperm-like venation in Peltaspermales: a reinvestigation of Furcula. Coiro M; McLoughlin S; Steinthorsdottir M; Vajda V; Fabrikant D; Seyfullah LJ New Phytol; 2024 Jun; 242(6):2845-2856. PubMed ID: 38623034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]