These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28005319)

  • 1. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.
    Sun X; Rykaczewski K
    ACS Nano; 2017 Jan; 11(1):906-917. PubMed ID: 28005319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Condensation Frosting by Arrays of Hygroscopic Antifreeze Drops.
    Sun X; Damle VG; Uppal A; Linder R; Chandrashekar S; Mohan AR; Rykaczewski K
    Langmuir; 2015 Dec; 31(51):13743-52. PubMed ID: 26651017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.
    Kim A; Lee C; Kim H; Kim J
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7206-13. PubMed ID: 25782028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of frost formation on lubricant-impregnated surfaces.
    Rykaczewski K; Anand S; Subramanyam SB; Varanasi KK
    Langmuir; 2013 Apr; 29(17):5230-8. PubMed ID: 23565857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desublimation Frosting on Nanoengineered Surfaces.
    Walker C; Lerch S; Reininger M; Eghlidi H; Milionis A; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Aug; 12(8):8288-8296. PubMed ID: 30001108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces.
    Hauer L; Wong WSY; Donadei V; Hegner KI; Kondic L; Vollmer D
    ACS Nano; 2021 Mar; 15(3):4658-4668. PubMed ID: 33647197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces.
    Zhang Y; Klittich MR; Gao M; Dhinojwala A
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6512-6519. PubMed ID: 28117579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Methyl-Functionalized Silica Nanosprings for Superhydrophobic and Defrosting Coatings.
    Corti G; Schmiesing NC; Barrington GT; Humphreys MG; Sommers AD
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4607-4615. PubMed ID: 30615841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces.
    Stamatopoulos C; Hemrle J; Wang D; Poulikakos D
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10233-10242. PubMed ID: 28230349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost.
    Wang S; Zhang W; Yu X; Liang C; Zhang Y
    Sci Rep; 2017 Jan; 7():40300. PubMed ID: 28074938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate.
    Chen J; Dou R; Cui D; Zhang Q; Zhang Y; Xu F; Zhou X; Wang J; Song Y; Jiang L
    ACS Appl Mater Interfaces; 2013 May; 5(10):4026-30. PubMed ID: 23642212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing.
    Hao Q; Pang Y; Zhao Y; Zhang J; Feng J; Yao S
    Langmuir; 2014 Dec; 30(51):15416-22. PubMed ID: 25466489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive Antifrosting Surfaces Using Microscopic Ice Patterns.
    Ahmadi SF; Nath S; Iliff GJ; Srijanto BR; Collier CP; Yue P; Boreyko JB
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32874-32884. PubMed ID: 30221924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
    Elsharkawy M; Tortorella D; Kapatral S; Megaridis CM
    Langmuir; 2016 May; 32(17):4278-88. PubMed ID: 27021948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.